Computational analyses of heat flux of wall Y+ in supercritical fluid using star – Ccm+ Cfd code

2021 ◽  
Vol 19 (3) ◽  
pp. 139-152
Author(s):  
Omamoke O. E. Enaroseha ◽  
Ernest Ogheneruona Ojegu

Theoretical modeling techniques on resolving turbulent heat flows in a nondimensionalcircular tube mounted obstacle using the wall Y+ as guidance in selecting the appropriate grid configuration and corresponding turbulence models are investigated using CFD Code. The results obtained shows that the heat fluxes of 20, 23, 30 and 40 kW/m2, increases as the Y+wall profile moves away from the near – wall region, this is due to the effect of viscosity, buoyance, acceleration and the friction of the turbulence modification.The results also indicates that the low Y+wall treatment is suitable only for low Reynolds turbulence models in which it is assumed that the viscous sub-layer is  properly resolved. The simulated results obtained in this research are in good agreements with the experimental results in the literature,even though they over predicted the observed heat transfer deterioration both quantitatively and qualitatively. Keywords: Wall Y+ , Turbulence, Supercritical fluid, Heat flux

2012 ◽  
Vol 134 (7) ◽  
Author(s):  
B. A. Younis ◽  
B. Weigand ◽  
A. Laqua

This paper reports on the prediction of heat transfer in a fully developed turbulent flow in a straight rotating channel with blowing and suction through opposite walls. The channel is rotated about its spanwise axis; a mode of rotation that amplifies the turbulent activity on one wall and suppresses it on the opposite wall leading to reverse transition at high rotation rates. The present predictions are based on the solution of the Reynolds-averaged forms of the governing equations using a second-order accurate finite-volume formulation. The effects of turbulence on momentum transport were accounted for by using a differential Reynolds-stress transport closure. A number of alternative formulations for the difficult fluctuating pressure–strain correlations term were assessed. These included a high turbulence Reynolds-number formulation that required a “wall-function” to bridge the near-wall region as well as three alternative low Reynolds-number formulations that permitted integration through the viscous sublayer, directly to the walls. The models were assessed by comparisons with experimental data for flows in channels at Reynolds-numbers spanning the range of laminar, transitional, and turbulent regimes. The turbulent heat fluxes were modeled via two very different approaches: one involved the solution of a modeled differential transport equation for each of the three heat-flux components, while in the other, the heat fluxes were obtained from an explicit algebraic model derived from tensor representation theory. The results for rotating channels with wall suction and blowing show that the algebraic model, when properly extended to incorporate the effects of rotation, yields results that are essentially identically to those obtained with the far more complex and computationally intensive heat-flux transport closure. This outcome argues in favor of incorporation of the algebraic model in industry-standard turbomachinery codes.


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


2020 ◽  
Vol 37 (4) ◽  
pp. 589-603 ◽  
Author(s):  
Xiangzhou Song

AbstractSea surface currents are commonly neglected when estimating the air–sea turbulent heat fluxes in bulk formulas. Using buoy observations in the Bohai Sea, this paper investigated the effects of near-coast multiscale currents on the quantification of turbulent heat fluxes, namely, latent heat flux (LH) and sensible heat flux (SH). The maximum current reached 1 m s−1 in magnitude, and a steady northeastward current of 0.16 m s−1 appeared in the southern Bohai Strait. The predominant tidal signal was the semidiurnal current, followed by diurnal components. The mean absolute surface wind was from the northeast with a speed of approximately 3 m s−1. The surface winds at a height of 11 m were dominated by the East Asian monsoon. As a result of upwind flow, the monthly mean differences in LH and SH between the estimates with and without surface currents ranged from 1 to 2 W m−2 in July (stable boundary layer) and November (unstable boundary layer). The hourly differences were on average 10 W m−2 and ranged from 0 to 24 W m−2 due to changes in the relative wind speed by high-frequency rotating surface tidal currents. The diurnal variability in LH/SH was demonstrated under stable and unstable boundary conditions. Observations provided an accurate benchmark for flux comparisons. The newly updated atmospheric reanalysis products MERRA-2 and ERA5 were superior to the 1° OAFlux data at this buoy location. However, future efforts in heat flux computation are still needed to, for example, consider surface currents and resolve diurnal variations.


Author(s):  
G. X. Li ◽  
W. Q. Tao ◽  
Z. Y. Li ◽  
B. Yu

Direct numerical simulation has been carried out to investigate the effect of weak rarefaction on turbulent gas flow and heat transfer characteristics in mirochannel. The Reynolds number based on the friction velocity and the channel half width is 150. Grid number is 64×128×64. Fractional time step method is employed for the unsteady Navier-Stokes equations, and the governing equations are discretized with Finite Difference Method. Statistical quantities such as turbulent intensity, Reynolds shear stress, turbulent heat flux and temperature variance are obtained under various Knudsen number from 0 to 0.05. The results show that rarefaction can influence the turbulent flow and heat transfer statistics. The streamwise mean velocity and temperature increase with increase of Kn number. In the near wall region rarefaction can increase the turbulent intensities and temperature variance. The effect of rarefaction on Reynolds shear stress and wall-normal heat flux are presented. The instantaneous velocity fluctuations in the vicinity of the wall are visualized and the influence of Kn number on the flow structure is discussed.


2019 ◽  
Vol 32 (8) ◽  
pp. 2397-2421 ◽  
Author(s):  
R. Justin Small ◽  
Frank O. Bryan ◽  
Stuart P. Bishop ◽  
Robert A. Tomas

Abstract A traditional view is that the ocean outside of the tropics responds passively to atmosphere forcing, which implies that air–sea heat fluxes are mainly driven by atmosphere variability. This paper tests this viewpoint using state-of-the-art air–sea turbulent heat flux observational analyses and a climate model run at different resolutions. It is found that in midlatitude ocean frontal zones the variability of air–sea heat fluxes is not predominantly driven by the atmosphere variations but instead is forced by sea surface temperature (SST) variations arising from intrinsic oceanic variability. Meanwhile in most of the tropics and subtropics wind is the dominant driver of heat flux variability, and atmosphere humidity is mainly important in higher latitudes. The predominance of ocean forcing of heat fluxes found in frontal regions occurs on scales of around 700 km or less. Spatially smoothing the data to larger scales results in the traditional atmosphere-driving case, while filtering to retain only small scales of 5° or less leads to ocean forcing of heat fluxes over most of the globe. All observational analyses examined (1° OAFlux; 0.25° J-OFURO3; 0.25° SeaFlux) show this general behavior. A standard resolution (1°) climate model fails to reproduce the midlatitude, small-scale ocean forcing of heat flux: refining the ocean grid to resolve eddies (0.1°) gives a more realistic representation of ocean forcing but the variability of both SST and of heat flux is too high compared to observational analyses.


2011 ◽  
Vol 24 (24) ◽  
pp. 6283-6306 ◽  
Author(s):  
Ivana Cerovečki ◽  
Lynne D. Talley ◽  
Matthew R. Mazloff

Abstract The authors have intercompared the following six surface buoyancy flux estimates, averaged over the years 2005–07: two reanalyses [the recent ECMWF reanalysis (ERA-Interim; hereafter ERA), and the National Centers for Environmental Prediction (NCEP)–NCAR reanalysis 1 (hereafter NCEP1)], two recent flux products developed as an improvement of NCEP1 [the flux product by Large and Yeager and the Southern Ocean State Estimate (SOSE)], and two ad hoc air–sea flux estimates that are obtained by combining the NCEP1 or ERA net radiative fluxes with turbulent flux estimates using the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk formulas with NCEP1 or ERA input variables. The accuracy of SOSE adjustments of NCEP1 atmospheric fields (which SOSE uses as an initial guess and a constraint) was assessed by verification that SOSE reduces the biases in the NCEP1 fluxes as diagnosed by the Working Group on Air–Sea Fluxes (Taylor), suggesting that oceanic observations may be a valuable constraint to improve atmospheric variables. Compared with NCEP1, both SOSE and Large and Yeager increase the net ocean heat loss in high latitudes, decrease ocean heat loss in the subtropical Indian Ocean, decrease net evaporation in the subtropics, and decrease net precipitation in polar latitudes. The large-scale pattern of SOSE and Large and Yeager turbulent heat flux adjustment is similar, but the magnitude of SOSE adjustments is significantly larger. Their radiative heat flux adjustments patterns differ. Turbulent heat fluxes determined by combining COARE bulk formulas with NCEP1 or ERA should not be combined with unmodified NCEP1 or ERA radiative fluxes as the net ocean heat gain poleward of 25°S becomes unrealistically large. The other surface flux products (i.e., NCEP1, ERA, Large and Yeager, and SOSE) balance more closely. Overall, the statistical estimates of the differences between the various air–sea heat flux products tend to be largest in regions with strong ocean mesoscale activity such as the Antarctic Circumpolar Current and the western boundary currents.


2020 ◽  
Vol 33 (17) ◽  
pp. 7233-7253 ◽  
Author(s):  
Yuanlong Li ◽  
Weiqing Han ◽  
Fan Wang ◽  
Lei Zhang ◽  
Jing Duan

AbstractMulti-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies.


Author(s):  
Xiangzhou Song

AbstractUsing buoy observations from 2004 to 2010 and newly released atmospheric reanalysis and satellite altimetry-derived geostrophic currents from 1993 to 2017, the quantitative contribution of daily mean surface currents to air-sea turbulent heat flux and wind stress uncertainties in the Gulf Stream (GS) region is investigated based on bulk formulas. At four buoy stations, the daily mean latent (sensible) heat flux difference between the estimates with and without surface currents ranges from -18 (-4) to 20 (4) Wm-2, while the daily mean wind stress difference ranges from -0.04 to 0.02 Nm-2. The positive values indicate higher estimates with opposite directions between surface currents and absolute winds. The transition between positive and negative differences is significantly associated with synoptic-scale weather variations. The uncertainties based on buoy observations are approximately 7% and 3% for wind stress and turbulent heat fluxes, respectively. The new reanalysis and satellite geostrophic currents confirm the uncertainties identified by buoy observations with acceptable discrepancies and provide a spatial view of the uncertainty fields. The mean geostrophic currents are aligned with the surface wind along the GS; therefore, the turbulent heat fluxes and wind stress will be ‘underestimated’ with surface currents included. However, on both sides of the GS, the surface flow can be upwind due to possible mechanisms of eddy-mean flow interactions and recirculations, resulting in higher turbulent heat flux estimations. The wind stress and turbulent heat flux uncertainties experience significant seasonal variations and show long-term trends.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Hirofumi Hattori ◽  
Tomoya Houra ◽  
Amane Kono ◽  
Shota Yoshikawa

The objectives of this study are to reconstruct a turbulence model of both the large Eddy simulation (LES) and the Reynolds-averaged Navier–Stokes simulation (RANS) which can predict wind synopsis in various thermally stratified turbulent boundary layers over any obstacles. Hence, the direct numerical simulation (DNS) of various thermally stratified turbulent boundary layers with/without forward-step, two-dimensional block, or two-dimensional hill is carried out in order to obtain detailed turbulent statistics for the construction of a database for the evaluation of a turbulence model. Also, DNS clearly reveals the characteristics of various thermally stratified turbulent boundary layers with/without forward-step, two-dimensional block, or two-dimensional hill. The turbulence models employed in LES and RANS are evaluated using the DNS database we obtained. In the LES, an evaluated turbulence model gives proper predictions, but the quantitative agreement of Reynolds shear stress with DNS results is difficult to predict. On the other hand, the nonlinear eddy diffusivity turbulence models for Reynolds stress and turbulent heat flux are also evaluated using DNS results of various thermally stratified turbulent boundary layers over a forward-step in which the turbulence models are evaluated using an a priori method. Although the evaluated models do not make it easy to properly predict the Reynolds shear stresses in all cases, the turbulent heat fluxes can be qualitatively predicted by the nonlinear eddy diffusivity for a heat turbulence model. Therefore, the turbulence models of LES and RANS should be improved in order to adequately predict various thermally stratified turbulent boundary layers over an obstacle.


1992 ◽  
Vol 114 (3) ◽  
pp. 598-606 ◽  
Author(s):  
N. Kasagi ◽  
Y. Tomita ◽  
A. Kuroda

A direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air was carried out. The isoflux condition was imposed on the two walls so that the local mean temperature increased linearly in the streamwise direction. With any buoyancy effect neglected, temperature was considered as a passive scalar. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained were root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and dissipation time scales. They agreed fairly well with existing experimental and numerical simulation data. Each term in the budget equations of temperature variance, its dissipation rate, and turbulent heat fluxes was also calculated. It was found that the temperature fluctuation θ′ was closely correlated with the streamwise velocity fluctuation u′, particularly in the near-wall region. Hence, the distribution of budget terms for the streamwise and wall-normal heat fluxes, u′θ′ and v′θ′, were very similar to those for the two Reynolds stress components, u′u′ and u′v′.


Sign in / Sign up

Export Citation Format

Share Document