scholarly journals Evaluating derived vegetation indices and cover fraction to estimate rangeland aboveground biomass in semi-arid environments

2017 ◽  
Vol 6 (3) ◽  
pp. 333 ◽  
Author(s):  
Nahom Gudeta Fajji ◽  
Lobina G Palamuleni ◽  
Victor Mlambo
Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 354
Author(s):  
El-Sayed M. Desoky ◽  
Elsayed Mansour ◽  
Mohamed M. A. Ali ◽  
Mohamed A. T. Yasin ◽  
Mohamed I. E. Abdul-Hamid ◽  
...  

The influence of 24-epibrassinolide (EBR24), applied to leaves at a concentration of 5 μM, on plant physio-biochemistry and its reflection on crop water productivity (CWP) and other agronomic traits of six maize hybrids was field-evaluated under semi-arid conditions. Two levels of irrigation water deficiency (IWD) (moderate and severe droughts; 6000 and 3000 m3 water ha−1, respectively) were applied versus a control (well-watering; 9000 m3 water ha−1). IWD reduced the relative water content, membrane stability index, photosynthetic efficiency, stomatal conductance, and rates of transpiration and net photosynthesis. Conversely, antioxidant enzyme activities and osmolyte contents were significantly increased as a result of the increased malondialdehyde content and electrolyte leakage compared to the control. These negative influences of IWD led to a reduction in CWP and grain yield-related traits. However, EBR24 detoxified the IWD stress effects and enhanced all the above-mentioned parameters. The evaluated hybrids varied in drought tolerance; Giza-168 was the best under moderate drought, while Fine-276 was the best under severe drought. Under IWD, certain physiological traits exhibited a highly positive association with yield and yield-contributing traits or CWP. Thus, exogenously using EBR24 for these hybrids could be an effective approach to improve plant and water productivity under reduced available water in semi-arid environments.


Author(s):  
Abdelouhed Farah ◽  
Ahmed. Algouti ◽  
Abdellah. Algouti ◽  
Mohammed. Ifkirne ◽  
Aboubakr Ezziyani ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 2755
Author(s):  
Peng Fang ◽  
Nana Yan ◽  
Panpan Wei ◽  
Yifan Zhao ◽  
Xiwang Zhang

The net primary productivity (NPP) and aboveground biomass mapping of crops based on remote sensing technology are not only conducive to understanding the growth and development of crops but can also be used to monitor timely agricultural information, thereby providing effective decision making for agricultural production management. To solve the saturation problem of the NDVI in the aboveground biomass mapping of crops, the original CASA model was improved using narrow-band red-edge information, which is sensitive to vegetation chlorophyll variation, and the fraction of photosynthetically active radiation (FPAR), NPP, and aboveground biomass of winter wheat and maize were mapped in the main growing seasons. Moreover, in this study, we deeply analyzed the seasonal change trends of crops’ biophysical parameters in terms of the NDVI, FPAR, actual light use efficiency (LUE), and their influence on aboveground biomass. Finally, to analyze the uncertainty of the aboveground biomass mapping of crops, we further discussed the inversion differences of FPAR with different vegetation indices. The results demonstrated that the inversion accuracies of the FPAR of the red-edge normalized vegetation index (NDVIred-edge) and red-edge simple ratio vegetation index (SRred-edge) were higher than those of the original CASA model. Compared with the reference data, the accuracy of aboveground biomass estimated by the improved CASA model was 0.73 and 0.70, respectively, which was 0.21 and 0.13 higher than that of the original CASA model. In addition, the analysis of the FPAR inversions of different vegetation indices showed that the inversion accuracies of the red-edge vegetation indices NDVIred-edge and SRred-edge were higher than those of the other vegetation indices, which confirmed that the vegetation indices involving red-edge information can more effectively retrieve FPAR and aboveground biomass of crops.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Adeel Ahmad ◽  
Hammad Gilani ◽  
Sajid Rashid Ahmad

This paper provides a comprehensive literature review on forest aboveground biomass (AGB) estimation and mapping through high-resolution optical satellite imagery (≤5 m spatial resolution). Based on the literature review, 44 peer-reviewed journal articles were published in 15 years (2004–2019). Twenty-one studies were conducted across six continents in Asia, eight in North America and Africa, five in South America, and four in Europe. This review article gives a glance at the published methodologies for AGB prediction modeling and validation. The literature review suggested that, along with the integration of other sensors, QuickBird, WorldView-2, and IKONOS satellite images were most widely used for AGB estimations, with higher estimation accuracies. All studies were grouped into six satellite-derived independent variables, including tree crown, image textures, tree shadow fraction, canopy height, vegetation indices, and multiple variables. Using these satellite-derived independent variables, most of the studies used linear regression (41%), while 30% used linear (multiple regression and 18% used non-linear (machine learning) regression, while very few (11%) studies used non-linear (multiple and exponential) regression for estimating AGB. In the context of global forest AGB estimations and monitoring, the advantages, strengths, and limitations were discussed to achieve better accuracy and transparency towards the performance-based payment mechanism of the REDD+ program. Apart from technical limitations, we realized that very few studies talked about real-time monitoring of AGB or quantifying AGB change, a dimension that needs exploration.


1996 ◽  
Vol 47 (6) ◽  
pp. 829 ◽  
Author(s):  
JB Lowry ◽  
CS McSweeney ◽  
B Palmer

Mammalian metabolism of plant phenolics, initially studied in monogastric animals, gave an emphasis to their toxic and antinutrient effects. Subsequent studies in tropical ruminants and wild herbivores have highlighted the high levels than can occur in some diets and the extensive microbial modification and degradation that can occur in the tract. This paper reviews aspects of plant phenolics as they relate to ruminant nutrition in tropical or semi-arid environments in which some forage plants contain high levels of phenolic compounds. Effects range from occasional acute toxicity of hydrolysable tannins, to acetate-releasing microbial degradations that apparently enable certain phenolics to act as nutrients. The most important and complex effects are those due to tannin-protein interactions. Although these can clearly reduce feed intake, nutrient digestibilities, and protein availability, many of the interactions are still not understood. The diverse effects of plant phenolics on nutrient flow probably result from the balance between adverse effects on some organisms and the rate at which they are degraded or inactivated by other organisms, and improved animal performance can likely be obtained by manipulation of rumen microbial metabolism.


2021 ◽  
Vol 283 ◽  
pp. 110051
Author(s):  
Nompumelelo Thelma Mobe ◽  
Sebinasi Dzikiti ◽  
Timothy Dube ◽  
Dominic Mazvimavi ◽  
Zanele Ntshidi

2018 ◽  
Vol 110 (6) ◽  
pp. 2641-2651 ◽  
Author(s):  
Xianqing Hou ◽  
Rong Li

2016 ◽  
Vol 88 (2) ◽  
pp. 1113-1125 ◽  
Author(s):  
José N.B. Campos ◽  
Iran E. Lima Neto ◽  
Ticiana M.C. Studart ◽  
Luiz S.V. Nascimento

This study investigates the relationships between yield and evaporation as a function of lake morphology in semi-arid Brazil. First, a new methodology was proposed to classify the morphology of 40 reservoirs in the Ceará State, with storage capacities ranging from approximately 5 to 4500 hm3. Then, Monte Carlo simulations were conducted to study the effect of reservoir morphology (including real and simplified conical forms) on the water storage process at different reliability levels. The reservoirs were categorized as convex (60.0%), slightly convex (27.5%) or linear (12.5%). When the conical approximation was used instead of the real lake form, a trade-off occurred between reservoir yield and evaporation losses, with different trends for the convex, slightly convex and linear reservoirs. Using the conical approximation, the water yield prediction errors reached approximately 5% of the mean annual inflow, which is negligible for large reservoirs. However, for smaller reservoirs, this error became important. Therefore, this paper presents a new procedure for correcting the yield-evaporation relationships that were obtained by assuming a conical approximation rather than the real reservoir morphology. The combination of this correction with the Regulation Triangle Diagram is useful for rapidly and objectively predicting reservoir yield and evaporation losses in semi-arid environments.


Sign in / Sign up

Export Citation Format

Share Document