scholarly journals Preparation and characterization of N-benzyl-N,O-succinyl chitosan polymeric micelles for solubilization of poorly soluble non-steroidal anti-inflammatory drugs

2017 ◽  
Vol 16 (10) ◽  
pp. 2349-2357
Author(s):  
Thisirak Woraphatphadung ◽  
Warayuth Sajomsang ◽  
Theerasak Rojanarata ◽  
Prasert Akkaramongkolporn ◽  
Tanasait Ngawhirunpat ◽  
...  

Purpose: To investigate the solubilization of poorly water-soluble non-steroidal  anti-inflammatory drugs (NSAIDs) in N-benzyl-N,O-succinyl chitosan (BSCS)  polymeric micellesMethods: BSCS was synthesized by reductive amination and succinylation,  respectively. NSAIDs; meloxicam (MX), piroxicam (PRX), ketoprofen (KP) and indomethacin (IND) were entrapped in the hydrophobic inner cores by evaporation method. The effects of drug structure on loading efficiency, particle size and surface charge of micelles were investigated.Results: The critical micelle concentration of BSCS micelles was 0.0385 mg/mL and cytotoxicity on Caco-2 cells depends on the polymer concentration (IC50 = 3.23 ± 0.08 mg/mL). BSCS micelles were able to entrap MX, PRX, KP and IND and also improve the solubility of drugs. Drug loading efficiency was highly dependent on the drug molecules. The drug loading capacity of these BSCS micelles was in the following rank order: KP (282.9 μg/mg) > PRX (200.8 μg/mg) > MX (73.7 μg/mg) > IND (41.2 μg/mg). The highest loading efficiency was observed in KP-loaded BSCS micelles due to the attractive force between phenyl groups of KP and benzyl groups of the polymer. Particle size and surface charge were in the range of 312 - 433 nm and -38 to -41 mV, respectively.Conclusion: BSCS copolymer presents desirable attributes for enhancing the  solubility of hydrophobic drugs. Moreover, BSCS polymeric micelles might be beneficial carrier in a drug delivery system.Keywords: BSCS, polymeric micelles, solubilization, non-steroidal anti-inflammatory drugs

Author(s):  
Suchetana Dutta ◽  
P. K. Kulkarni ◽  
Shailesh T.

The aim of the present work was to study the dissolution behaviour of a poorly water-soluble Olmesartan Medoxomil (class II drug), by forming polymeric micelles (PMs) of SoluPlus and Pluronic F127. Polymeric Micelles of SoluPlus and Pluronic F127 were prepared by the co-solvent evaporation method. Drug and excipient compatibility study were carried out by Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry. The formulations were evaluated for particle size, Zeta Potential, Solubility studies, drug loading and encapsulation efficiency. Scanning Electron Microscopy (SEM) analysis was performed to study the surface morphology of the PMs. The SEM images showed spherical surface of the micelles. The drug loading efficiency was more for SoluPlus micelles compared to Pluronic F127 micelles. The Polymeric micelles showed negative zeta potential value indicating that they are stable and resist aggregation. The particle size was around 100nm and polydispersity index was less than 1 indicating uniform size distribution. The drug release from the SoluPlus micelles was higher than the Pluronic micelles. These results suggest that the polymeric micelles can be used to increase the solubility of poorly water-soluble drugs.


Author(s):  
Tibey Mary Koshy ◽  
Parthasarathi K Kulkarni

The aim of the work was to study the dissolution behaviour of the poorlywater-soluble drug mefenamic acid (MA), a NSAID, from polymeric micelles (PMs) of Pluronic F127 and DexbLG micelles.DexbLG Copolymer was synthesised by cross-linking reaction using Dextran and PLGA. Drug excipient compatibility study was carried out by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Pluronic F 127 and DexbLG Polymeric micelles formulation were prepared by co-solvent evaporation technique. Formulations were evaluated for particle size, Zeta potential, solubility studies, drug loading and encapsulation efficiency. Scanning electron microscopy (SEM) analysis was performed to study the size and surface morphology of the PMs. SEM image showed smooth surfaced spherical micelles. The drug loading efficiency was more inpluronic F 127 micelles. Polymeric micelles showed negative Zeta potential value indicating that they are stable and resist aggregation. Solubility of MA has increased to 6 - 13 folds from PMs of pluronic F127 and 4-11folds from DexbLG micelles. Particle size was less than 100 nm and polydispersity index was less than 0.5 indicating uniform size distribution. Percentage cumulative drug release from the Pluronic micelles was higher than DexbLG micelles. It can be concluded that MA PMs formulation has significantly increased the solubility and thereby increases the dissolution of the drug.These results suggest that polymeric micelles can be used to increase the solubility of poorly water-soluble drugs.  


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 467
Author(s):  
Mohammed F. Aldawsari ◽  
Mohammed Muqtader Ahmed ◽  
Farhat Fatima ◽  
Md. Khalid Anwer ◽  
Prakash Katakam ◽  
...  

The objective of this work was to develop sustained-release Ca-alginate beads of apigenin using sodium alginate, a natural polysaccharide. Six batches were prepared by applying the ionotropic gelation technique, wherein calcium chloride was used as a crosslinking agent. The beads were evaluated for particle size, drug loading, percentage yield, and in vitro drug release. Particle size was found to decrease, and drug entrapment efficiency was enhanced with an increase in the polymer concentration. The dissolution study showed sustained drug release from the apigenin-loaded alginate beads with an increase in the polymer proportion. Based on the dissolution profiles, BD6 formulation was optimized and characterized for FTIR, DSC, XRD, and SEM, results of which indicated successful development of apigenin-loaded Ca alginate beads. MTT assay demonstrated a potential anticancer effect against the breast cancer MCF-7 cell lines. The antimicrobial activity exhibited effective inhibition in the bacterial and fungal growth rate. The DPPH measurement revealed that the formulation had substantial antioxidant activity, with EC50 value slightly lowered compared to pure apigenin. A stability study demonstrated that the BD6 was stable with similar (f2) drug release profiles in harsh condition. In conclusion, alginate-based beads could be used for sustaining the drug release of poorly water-soluble apigenin while also improving in vitro antitumor, antimicrobial, and antioxidant activity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tamás Gera ◽  
Eszter Nagy ◽  
Tamás Smausz ◽  
Judit Budai ◽  
Tibor Ajtai ◽  
...  

Abstract We studied the application of pulsed laser ablation (PLA) for particle size reduction in non-steroidal anti-inflammatory drugs (NSAIDs). Grinding of the poorly water-soluble NSAID crystallites can considerably increase their solubility and bioavailability, thereby the necessary doses can be reduced significantly. We used tablets of ibuprofen, niflumic acid and meloxicam as targets. Nanosecond laser pulses were applied at various wavelengths (KrF excimer laser, λ = 248 nm, FWHM = 18 ns and Nd:YAG laser, λ1 = 532 nm/λ2 = 1064 nm, FWHM = 6 ns) and at various fluences. FTIR and Raman spectra showed that the chemical compositions of the drugs had not changed during ablation at 532 nm and 1064 nm laser wavelengths. The size distribution of the ablated products was established using two types of particle size analyzers (SMPS and OPC) having complementary measuring ranges. The mean size of the drug crystallites decreased from the initial 30–80 µm to the submicron to nanometer range. For a better understanding of the ablation mechanism we made several investigations (SEM, Ellipsometry, Fast photography) and some model calculations. We have established that PLA offers a chemical-free and simple method for the size reduction of poorly water-soluble drugs and a possible new way for pharmaceutical drug preformulation for nasal administration.


2021 ◽  
Author(s):  
Jinkun Yin ◽  
Yaoqing Chu ◽  
Si-Jian Pan ◽  
Lianjiang Tan

Precise treatment of local inflammation is always challenging. Administration of anti-inflammatory drugs by direct injection has been considered as an efficient method for inflammation inhibition. In the present work, injectable...


Author(s):  
Sejal Patel ◽  
Anita P. Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. After oral administration to get maximum therapeutic effect, major challenge is their water solubility. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is poorly water soluble antihypertensive drug has lower bioavailability. To improve bioavailability of Benidipine HCL, BND nanosuspension was formulated using media milling technique. HPMC E5 was used to stabilize nanosuspension. The effect of different important process parameters e.g. selection of polymer concentration X1(1.25 mg), stirring time X2 (800 rpm), selection of zirconium beads size X3 (0.4mm) were investigated by 23 factorial design to accomplish desired particle size and saturation solubility. The optimized batch had 408 nm particle size Y1, and showed in-vitro dissolution Y2 95±0.26 % in 30 mins and Zeta potential was -19.6. Differential scanning calorimetry (DSC) and FT-IR analysis was done to confirm there was no interaction between drug and polymer.


2019 ◽  
Author(s):  
Malik Salman Haider ◽  
Michael M Lübtow ◽  
Sebastian Endres ◽  
Vladimir Aseyev ◽  
Ann-Christin Pöppler ◽  
...  

Polymeric micelles are typically characterized as core-shell structures. The hydrophobic inner core is considered as depot for hydrophobic molecules such as drugs or catalysts and the corona forming block acts as protective, stabilizing and solubilizing interface between the hydrophobic core and the external aqueous milieu. Tremendous efforts have been made to tune the hydrophobic block to increase the drug loading and stability of the micelles, while the role of hydrophilic blocks regarding drug loading and stability of micelles is rarely studied in detail. To do so, we investigated a small library of structurally similar A-B-A type amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s by varying the hydrophilic block A utilizing poly(2-methyl-2-oxazoline) (A) or poly(2-ethyl-2-oxazoline) (A*), both excellently water-soluble polymers that are able to provide beneficial stealth properties. Surprisingly, major differences in loading capacities from A-B-A > A*-B-A > A*-B-A* highlight the impact of the hydrophilic corona of the polymer micelles on drug loading and stability. 1H-NMR spectroscopy revealed that the hydrophilic pEtOx exhibits a stronger interaction with the cargo compared with its more hydrophilic counterpart pMeOx, reducing colloidal stability of the drug loaded micelles at lower drug loading. To gain more insights, formulations were also characterized by diffusion ordered and nuclear Overhauser effect NMR spectroscopy, dynamic light scattering and (micro) differential scanning calorimetry. Our findings suggest that the interaction between the hydrophilic block and the guest molecule should be considered an important but previously largely ignored factor for the rational design of polymeric micelles.<br>


2019 ◽  
Vol 9 (3) ◽  
pp. 212-221 ◽  
Author(s):  
Aparna Bhalerao ◽  
Pankaj Prakash Chaudhari

Cilinidipine is a fourth generation N and L-type calcium channel antagonists used alone or in combination with another drug to treat hypertension. Cilnidipine is poorly water -soluble, BCS class II drug with 6 to 30 percent oral bioavailability due to first pass metabolism. So to protect the drug from degradation and improve its dissolution, solid lipid nanoparticles were prepared. Glyceryl monostearate was selected as lipid while span 20: tween 20 were selected as surfactant blends. The formulations were evaluated for various parameters, as percent transmittance, drug content, percent encapsulation efficiency; percent drug loading, In vitro drug release and particle size. Optimized formulation was lyophilized using lactose as a cryo-protectant. The lyophilized formulation was evaluated for micromeritic properties, particle size and in vitro dissolution. It was further evaluated for DSC, XRD, and SEM. Percent encapsulation efficiency and percent drug loading of optimized formulation (F3) were 78.66percent and 9.44percent respectively. The particle size of F3 formulation without drug was 204 nm and with the drug was 214 nm. The particle size of the reconstituted SLN was 219 nm. In DSC study, no obvious peaks for cilnidipine were found in the SLN of cilnidipine indicated that the cilnidipine must be present in a molecularly dissolved state in SLN. In X-ray diffractometry absence of peaks representing crystals of cilnidipine in SLN indicated that the drug was in an amorphous or disordered crystalline phase in the lipid matrix. Thus, solid lipid nanoparticle formulation is a promising way to enhance the dissolution rate of cilnidipine. Keywords: Cilnidipine, Solid Lipid Nanoparticle, Hypertension


2021 ◽  
Vol 11 (3) ◽  
pp. 3745-3769

Previously, it has been claimed that artemisinin derivatives, e.g., dihydroartemisinin, possess very potent anti-inflammatory activity. The study aimed to formulate gels based on surface-modified nanostructured lipid carrier (NLC) and contain dihydroartemisinin (DHA) to treat localized inflammation. NLC was developed using Softisan®154 and Tetracarpidium conophorum oil and structured using PEG 4000. Physicochemical characterization of NLC, including surface charge, particle size, and encapsulation efficiency (EE%), was evaluated. NLCwas dispersed in hydroxypropyl cellulose, and the resulting nanogels were evaluated for drug content, ex vivo permeation, and anti-inflammatory activity. The surface charge and particle size of NLC ranged from -15.3 ± 1.1 to -25.5 ± 2.1 mV and 85.5 ± 8.6 – 108.7 ± 5.5 nm respectively. EE% of NLC was in the range of 90.0 ± 1.21 – 99.3 ± 1.60 %. NLC gels had high drug content (83 – 99 %). Ex vivo permeation study showed sustained-release of DHA over 24 h. The gels produced a sustained-release reduction of egg albumin-induced inflammation in rats up to 8 h for 7 days. Development of surface-modified lipid nanoparticles-based gel containing DHA produced controlled release of the drug localized inflammation.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Gholamabbas Chehardoli ◽  
Parham Norouzian ◽  
Farzin Firozian

Background. Betamethasone as a corticosteroid drug is commonly used for the treatment of rheumatoid arthritis. Unfortunately, betamethasone is a low water-soluble drug and its efficacy is low. So an attractive strategy is the targeted delivery of betamethasone to the damaged joint using polymeric micelle-based carriers. Methods. Inulin-grafted stearate (In-g-St) was synthesized via the reaction of stearoyl chloride and inulin, then characterized by FT-IR and H-NMR. In-g-St forms micelles in the presence of betamethasone. The prepared polymeric micelles were characterized for size, zeta potential, drug loading, particles’ morphology, critical micelle concentration (CMC), and encapsulation efficiency. So sustained release polymeric micelles of betamethasone were developed by employing In-g-St. Results. The measurement of particle size showed a mean diameter of 60 and 130 nm for 10% and 20% drug-loaded micelles, respectively, and SEM showed that the particle’s morphologies are spherical. Zeta potential measurement for the drug-containing micelles showed a value of -11.8 mV. Drug loading efficiency and the encapsulation efficiency were 6.36% and 63.6%, as well as 18.97% and 94.88% for 10% and 20%, respectively. 20% drug-loaded polymer showed a small burst release of betamethasone at the first 3 h which was followed by sustained release in the next 24 h. Furthermore, the formula with 10% exhibited good sustained release properties except for the minor initial burst release. Conclusion. Data from the zeta potential, CMC, drug loading capacity, and in vitro drug release studies indicated that In-g-St polymeric micelles can be suitable candidates for the efficient delivery of hydrophobic drugs like betamethasone.


Sign in / Sign up

Export Citation Format

Share Document