scholarly journals Trigonoside II mitigates sepsis-induced myocardial injury via reduction in oxidative stress and regulation of TLR- 4/NF-kB inflammatory pathway

2020 ◽  
Vol 19 (6) ◽  
pp. 1161-1166
Author(s):  
Fengru Wang ◽  
Lili Wu ◽  
Qun Liang

Purpose: To investigate the protective effect of trigonoside II against sepsis-induced myocardial injury in rats, and the mechanism involved. Methods: Adult male Sprague Dawley rats (n = 30) weighing 200 - 230 g (mean weight = 215 ± 15 g) were used for this study. The rats were randomly assigned to 3 groups (10 rats/group): sham, cecal ligation puncture (CLP), and trigonoside II. Rats in the treatment group received trigonoside II at a dose of 2 mg/kg intraperitoneally (i.p.) at 3, 12 and 24 h post-surgery. Sepsis was induced using CLP method. Lactate  dehydrogenase (LDH) and creatine kinase (CK-MB) activities, and hemodynamic functions were determined in the rats. The levels of interleukin (IL)-1β and IL-6, and tumor necrosis factor α (TNF-α) were assayed in rat serum. Oxidative stress and myocardial cell apoptosis were determined by measuring malondialdehyde (MDA) levels, while activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and myeloperoxidase (MPO), as well as levels of expression of bax, bcl-2 and caspase-3 were also assessed. Results: Treatment of myocardial injury rats with trigonoside II led to significant reductions in the activities of LDH, CK-MB and MPO, and decreases in levels of IL-1β, IL-6 and TNF-α (p < 0.05). It also significantly reversed the effects of sepsis on rat hemodynamic functions (p < 0.05). Trigonoside IItreatment significantly reduced MDA levels in rat myocardial tissues, but significantly increased SOD and GPx activities (p < 0.05). It significantly down-regulated protein expressions of NF-kB and TLR-4 in myocardial tissues (p < 0.05). The number of apoptotic cells and activity of caspase-3 were significant increased in myocardial tissues of rats in CLP group, when compared with sham group, but were reduced significantly in myocardial tissues of trigonoside II-treated rats (p < 0.05). Similarly, trigonoside II treatment down-regulated the protein expressions of caspase-3 and bax, but upregulated bcl-2 protein expression in the rat myocardial tissues (p < 0.05). Conclusion: The results of this study indicate that trigonoside II confers protection on sepsis-induced myocardial injury via reduction in oxidative stress and regulation of TLR-4/NF-kB inflammatory pathway. Keywords: Cecal ligation puncture, Myocardial injury, Oxidative stress, Sepsis, Trigonoside II

2021 ◽  
Vol 35 ◽  
pp. 205873842110314
Author(s):  
Fei Zeng ◽  
Jierong Luo ◽  
Hong Han ◽  
Wenjie Xie ◽  
Lingzhi Wang ◽  
...  

Hyperglycemia-induced oxidative stress plays important roles in the development of non-alcoholic fatty liver disease (NAFLD), which is a common complication in diabetic patients. The Nrf2-Keap1 pathway is important for cell antioxidant protection, while its role in exogenous antioxidant mediated protection against NAFLD is unclear. We thus, postulated that antioxidant treatment with allopurinol (ALP) may attenuate diabetic liver injury and explored the underlying mechanisms. Control (C) and streptozotocin (STZ)-induced diabetes rats (D) were untreated or treated with ALP for 4 weeks starting at 1 week after diabetes induction. Serum levels of alanine aminotransferase (ALT) and aspartate transaminase (AST), production of lipid peroxidation product malondialdehyde (MDA), and serum superoxide dismutase (SOD) were detected. Liver protein expressions of cleaved-caspase 3, IL-1β, nuclear factor-erythroid-2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), P62, Kelch-like ECH-associated protein 1 (Keap1), and LC3 were analyzed. In vitro, cultured rat normal hepatocytes BRL-3A were grouped to normal glucose (5.5 mM, NG) or high glucose (25 mM, HG) and treated with or without allopurinol (100 µM) for 48 h. Rats in the D group demonstrated liver injury evidenced as increased serum levels of ALT and AST. Diabetes increased apoptotic cell death, enhanced liver protein expressions of cleaved-caspase 3 and IL-1β with concomitantly increased production of MDA while serum SOD content was significantly reduced (all P < 0.05 vs C). In the meantime, protein levels of Nrf2, HO-1, and P62 were reduced while Keap1 and LC3 were increased in the untreated D group as compared to control ( P < 0.05 vs C). And all the above alterations were significantly attenuated by ALP. Similar to our findings obtained from in vivo study, we got the same results in in vitro experiments. It is concluded that ALP activates the Nrf2/p62 pathway to ameliorate oxidative stress and liver injury in diabetic rats.


2021 ◽  
Vol 40 (12_suppl) ◽  
pp. S397-S405
Author(s):  
Pankaj Tripathi ◽  
Saeed Alshahrani

Background: Ursolic acid (UA) is a natural pentacyclic triterpenoid that is known for its benefits under several pathological conditions. Cisplatin (CP) is among the most preferred chemotherapeutic agents; however, its nephrotoxicity limits its clinical utility. Purpose: This study was aimed to determine the role of UA in the reduction of CP-induced nephrotoxicity and mitigation of pro-inflammatory cytokines and apoptosis in a rat model. Methodology: Male Wistar rats were randomized into vehicle control, CP (7.5 mg/kg), UA 10 mg/kg, and CP with UA 5 and 10 mg/kg groups. Kidney and blood samples were collected for assessment of renal function, measurement of pro-inflammatory cytokines, apoptosis markers, antioxidant activity, and tissue histology. Results: CP significantly increased the levels of serum Cr, BUN, and uric acid; it also induced histological damage reflecting the pathophysiology observed during nephrotoxicity. CP has also shown its pro-oxidant activity in kidney tissue because CP decreased the levels of GSH, SOD, and CAT; it increased the lipid peroxidation as measured by MDA content. In addition, CP significantly upregulated the activity of pro-inflammatory cytokines and expression of apoptotic markers, that is, there were increased levels of IL-1β, IL-6, TNF-α, caspase-3, and caspase-9. Two weeks of continuous treatment of UA showed significant recovery against CP-induced nephrotoxicity; UA decreased the levels of Cr, BUN, and uric acid and ameliorated histological damage. UA also downregulated the activities of IL-1β, IL-6, and TNF-α as well as expression of caspase-3 and caspase-9. Furthermore, CP-induced oxidative stress that was antagonized by UA—the levels of GSH, SOD, and CAT were significantly increased while MDA content was decreased. Conclusions: UA has a protective effect against CP-induced nephrotoxicity, which may be due to its antioxidant activity and mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Shuzhuang Li ◽  
Xuan Liu ◽  
Deqin Yu ◽  
Chong Chen ◽  
Xiaolong Chen

Mechanical trauma, such as that induced by motor vehicle crashes, represents a major medical and economic problem in the world. Identifying the mechanisms responsible for post-traumatic secondary myocardial injury is critical in order to reduce overall mortality and improve quality of life after trauma. We have previously demonstrated that mechanical trauma-induced overproduction of TNF-α plays a causative role in cardiomyocyte apoptosis via oxidative/nitrative stress. Transient receptor potential melastatin 2 (TRPM2) is a Ca 2+ permeable non-selective cation channel activated by oxidative stress, expressed in the cardiomyocytes. The present study attempted to identify whether TRPM2 is involved in TNF-α-induced cardiomyocyte apoptosis. Cardiomyocytes were isolated from adult male Sprague Dawley rats and cultured with TNF-α (10 ng/ml) for 12h. RT-PCR and semi-quantitative immunohistochemistry were used to quantify TRPM2 mRNA and protein levels respectively. Significant increases in TRPM2 mRNA and protein expression were observed in TNF-α-treated cardiomyocytes, suggesting that TRPM2 may contribute to TNF-α-induced cardiomyocyte apoptosis. To identify the effect of TRPM2 on TNF-α-induced cardiomyocyte apoptosis, cardiomyocytes were cultured with TNF-α or TNF-α + TRPM2 inhibitor (flufenamic acid (FFA) 100uM or clotrimazole 30uM), respectively. Exposure of cardiomyocytes to TNF-α for 12h induced significant apoptosis as determined by caspase-3 activation (1.7-fold increase vs. control, P < 0.01). In contrast, TNF-α-induced caspase-3 activity increases were significantly depressed by FFA and clotrimazole, respectively (P < 0.05). To further confirm the effect of TRPM2 on TNF-α-induced cardiomyocyte apoptosis, we tested the effects of TRPM2-specific small interfering RNA (siRNA). As a result, impressively, TNF-α-induced increases of caspase-3 activity and lysate nucleosomes were significantly reduced in TRPM2-specific siRNA-treated cardiomyocytes (P < 0.01). These results indicate that TRPM2 plays an important role in TNF-α-induced cardiomyocyte apoptosis. We propose functional inhibition of TRPM2 channels as a new therapeutic strategy for treating mechanical trauma-induced secondary myocardial injury.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 703 ◽  
Author(s):  
Ahlam Alhusaini ◽  
Laila Fadda ◽  
Iman H. Hasan ◽  
Enas Zakaria ◽  
Abeer M. Alenazi ◽  
...  

Lead (Pb) is a toxic heavy metal pollutant with adverse effects on the liver and other body organs. Curcumin (CUR) is the principal curcuminoid of turmeric and possesses strong antioxidant and anti-inflammatory activities. This study explored the protective effect of CUR on Pb hepatotoxicity with an emphasis on oxidative stress, inflammation and Akt/GSK-3β signaling. Rats received lead acetate and CUR and/or ascorbic acid (AA) for seven days and samples were collected for analyses. Pb(II) induced liver injury manifested by elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), as well as histopathological alterations, including massive hepatocyte degeneration and increased collagen deposition. Lipid peroxidation, nitric oxide, TNF-α and DNA fragmentation were increased, whereas antioxidant defenses were diminished in the liver of Pb(II)-intoxicated rats. Pb(II) increased hepatic NF-κB and JNK phosphorylation and caspase-3 cleavage, whereas Akt and GSK-3β phosphorylation was decreased. CUR and/or AA ameliorated liver function, prevented tissue injury, and suppressed oxidative stress, DNA damage, NF-κB, JNK and caspase-3. In addition, CUR and/or AA activated Akt and inhibited GSK-3β in Pb(II)-induced rats. In conclusion, CUR prevents Pb(II) hepatotoxicity via attenuation of oxidative injury and inflammation, activation of Akt and inhibition of GSK-3β. However, further studies scrutinizing the exact role of Akt/GSK-3β signaling are recommended.


2016 ◽  
Vol 14 (1) ◽  
pp. 551-559 ◽  
Author(s):  
MINGHAO ZHANG ◽  
XIUYU WANG ◽  
BIN BAI ◽  
RUI ZHANG ◽  
YUNHONG LI ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Tsen-Ni Tsai ◽  
Jia-Jing Ho ◽  
Maw-Shung Liu ◽  
Tzu-Ying Lee ◽  
Mei-Chin Lu ◽  
...  

This study examined the role of exogenous heat shock protein 72 (Hsp72) in reversing sepsis-induced liver dysfunction. Sepsis was induced by cecal ligation and puncture. Liver function was determined on the basis of the enzymatic activities of serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT). Apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved caspase-3 and caspase-9, and cleaved poly (ADP-ribose) polymerase (PARP) protein expressions were analyzed using Western blotting. Results showed GOT and GPT levels increased during sepsis, and levels were restored following the administration of human recombinant Hsp72 (rhHsp72). Increased liver tissue apoptosis was observed during sepsis, and normal apoptosis resumed on rhHsp72 administration. The Bcl-2/Bax ratio, cleaved caspase-3, caspase-9, and PARP protein expressions in the liver tissues were upregulated during sepsis and normalized after rhHsp72 treatment. We conclude that, during sepsis, exogenous Hsp72 restored liver dysfunction by inhibiting apoptosis via the mitochondria-initiated caspase pathway.


2021 ◽  
Vol 18 (4) ◽  
pp. 713-719
Author(s):  
Yan Huang ◽  
Hongsheng Gang ◽  
Bitao Liang ◽  
Ming Li

Purpose: To investigate the therapeutic effect of 3, 4-dihydroxyphenylethanol (DOPET) on cadmium (Cd) induced cardiotoxicity in murine model. Methods: Four groups of rats were used in this study (n = 6). The rats were treated with DOPET and Cd for 28 days. Biochemical parameters were determined in plasma and heart tissue homogenates. Results: Cadmium (Cd) significantly increased lipid peroxidation and protein carbonylation. However, DOPET treatment significantly attenuated Cd-induced oxidative stress. Cd intoxication significantly increased cardiac markers {creatine kinase, lactate dehydrogenase (LDH) and cardiac troponin-I} levels in plasma, and reduced the levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase Gpx ,glutathione (GSH) and malndialdehyde (MDA) in heart tissue. These Cdinduced changes in cardiac markers and antioxidants were reversed by DOPET treatment. Cd treatment led to upregulation of protein expressions of pro-inflammatory cytokines (TNF-α and Il-6). However, DOPET supplementation brought about a decrease in the protein expressions of these cytokines. Western blot analysis revealed that Cd induced apoptosis in cardiac tissue, as was evident from alterations in protein expressions of the apoptotic inducers, Bax and cleaved caspase-3, and the anti-apoptotic factor Bcl-2. However, DOPET treatment effectively reversed Cd-induced apoptosis. Conclusion: These results indicate that DOPET exerts cardio-protective effect against Cd-induced toxicity via antioxidant, anti-inflammatory and anti-apoptotic mechanisms.


2019 ◽  
Author(s):  
Osama M. Ahmed ◽  
Tarek M. Ali ◽  
Mohamed A. Abdel Gaid ◽  
Ahmed A. Elberry

AbstractThis study aimed to assess the renopreventive effect of the angiotensin converting enzyme inhibitor (ACEI), enalapril, and/or vitamin D receptor (VDR) activator, paricalcitol, on streptozotocin (STZ) diabetes-induced nephropathy and to elucidate the mechanisms of action through investigation of the effects on renal oxidative stress, antioxidant defense system and expressions of TNF-α, P53, caspase-3, and Bcl-2. Diabetes mellitus was induced in fasting male Wistar rats by single intraperitoneal injection of STZ (45 mg /kg b.w.) dissolved in citrate buffer pH 4.5. Ten days after STZ injection, the diabetic rats were treated with enalapril (25 mg/l of drinking water) and/or paricalcitol (8 µg/kg b.w.per os) dissolved in 5% DMSO daily for 4 weeks. The obtained data revealed that the treatment of diabetic Wistar rats with enalapril and/or paricalcitol led to a significant decrease in the elevated serum urea, uric acid, creatinine and sodium, potassium levels; thereby reflecting improvement of the impaired kidney function. The deteriorated kidney lipid peroxidation, GSH content and GST and catalase activities in diabetic rats were significantly ameliorated as a result of treatment with enalapril and/or paricalcitol. The elevated fasting and post-prandial serum glucose levels and the lowered serum insulin and C-peptide levels were also improved. Moreover, the treatment of diabetic rats successfully prevented the diabetes-induced histopathological deleterious changes of kidney and islets of Langerhans of pancreas. In association, the immunohistochemically detected pro-inflammatory cytokine TNF-α and apoptotic mediators P53 and caspase-3 were remarkably decreased in kidney of diabetic rats as a result of treatment, while the expression of anti-apoptotic protein Bcl-2 was increased. Based on these findings, it can be concluded that enalapril and paricalcitol can prevent STZ diabetes-induced nephropathy though amelioration of the glycemic state and antioxidant defense system together with the suppression of oxidative stress, inflammation and apoptosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chao Mai ◽  
Li Qiu ◽  
Yong Zeng ◽  
Xingqin Tan

Gardenia jasminoides Ellis is rich in geniposide, which can be transformed into the anti-oxidant and anti-inflammatory agent genipin. Genipin exhibits greater efficacy than geniposide, but it is unstable and difficult to preserve. In this study, a mouse model for sepsis was established by cecal ligation and puncture, and then we explored the effects and mechanism of Lactobacillus casei strain Shirota (LcS) on the enhancement of the ability of geniposide to reduce sepsis and decrease inflammatory and oxidative levels in mice by the regulation of sirtuin type 1 (SIRT1). The mice were evaluated and analyzed by the open field test, Morris water maze test, flow cytometry, kit assay, qPCR, and western blot. The LcS + geniposide increased the survival rate in mice with sepsis, and increased the total travel distance, number of times the mice stood up, amount of time the mice spent grooming their fur, duration in the target quadrant, and crossing area number. The testing of mouse nerve cells showed that LcS + geniposide reduced the rate of nerve cell apoptosis caused by sepsis. LcS + geniposide also decreased the amount of inflammatory-related indicators of TNF-α, IL-6, and IL-1β, and the oxidation-related levels of malondialdehyde (MDA) in the hippocampi of septic mice, and it increased the oxidase activities of superoxide dismutase (SOD) and catalase (CAT). Additionally, LcS + geniposide increased the SOD1, SOD2, and CAT mRNA expression in the hippocampi of mice with sepsis and decreased the expression of TNF-α, IL-1β, NF-κB, and p53 mRNA. LcS+geniposide also increased the SIRT1 protein expression and decreased the Ac-FOXO1, Ac-NF-κB, and Ac-p53 protein expression in the hippocampi of mice with sepsis. We also observed that LcS + geniposide decreased the inflammatory and oxidative damage in the mice with sepsis. The effect of LcS + geniposide was similar to that of the drug dexamethasone and stronger than the effect of geniposide utilized alone. LcS also enhanced the ability of geniposide to activate SIRT1 and decrease the inflammation and oxidative stress in the septic mice, and it achieved an effect same with that obtained by the use of the drug dexamethasone.


Author(s):  
Erkan Arslan ◽  
Hakan Turk ◽  
Murat Caglayan ◽  
Tugba Taskin Turkmenoglu ◽  
Ataman Gonel ◽  
...  

Background: Various effects of Astaxanthin was shown in the studies including its antioxidant, anti-inflammatory, anti-tumor and immunregulator effects. Objective: The aim of this study was to evaluate the beneficial effects of Astaxanthin on renovascular occlusion induced renal injury and to investigate the possible mechanisms. Methods: The rats were randomly assigned into three groups as follows: Group 1: control group (n=12), Group 2: renal ischemiareperfusion injury group (n=12), Group 3: renal ischemia-reperfusion + asthaxantine treated group (n=12). The control group and the renal ischemia-reperfusion group were given 2cc/kg/g olive oil for 7 days before establishing ischemia to renal tissue. Astaxanthin dissolved in olive oil was given orally to the renal ischemia+astaxanthin group for 7 days before inducing renal ischemia. Caspase-(3, 8, 9), GSH, SOD, Total Thiol, TNF-α, IL-6, 8-OHdG were performed for each group. Results: Renal IRI was verified by analysing the pathological changes of renal tissues and the renal functions after renal reperfusion. Much less renal tubular damage was determined the IRI+ASX group in comparison to the IRI group. Caspase-8, -9 and -3 immunoreactivity was observed to be minimal in the control group. Apoptosis was observed to be significantly reduced in the IRI + ASX group with respect to IRI group and close to the level of the control group (p <0.05). Caspase-3 levels of tissue samples were significantly increased in IRI group compared to other groups, but significantly lower in IRI+ASX group with respect to the IRI group (p<0.05). The TOS and OSI levels, indicating increased oxidative stress, were significantly lower in the IRI+ASX group with respect to the IRI group (p <0.001), but still higher than the control group (p <0.001). In addition to GSH, SOD and Total Thiol levels, TAS levels were also significantly higher in IRI + ASX group in comparison to the IRI group (p <0.05). TNF-α, IL-6, lipid hydroperoxide, AOPP and 8-OHdG levels were lower in the IRI+ASX group than the IRI group (p <0.001). MPO, IL-6, TNF-α levels, representing the parameters indicating neutrophil infiltration and inflammation of the renal tissues, significantly increased in IRI group with respect to the other groups (p <0.005). Conclusion: When all the data obtained in our study were evaluated, ASX was determined to prevent renal damage due to renovascular occlusion to a great extent, through complex mechanisms involving antioxidant, anti-inflammatory and antiapopitotic effects. Biochemical, histological and oxidative stress parameters were improved due to ASX.


Sign in / Sign up

Export Citation Format

Share Document