scholarly journals Advances in Nanomaterials Sciences and Nanotechnology for Sustainable Development: A Review

2021 ◽  
Vol 47 (4) ◽  
pp. 1450-1463
Author(s):  
Gervas E. Assey ◽  
Wilhelm S. Malasi

The fields of materials sciences have great opportunities to address the challenges of sustainable development of modern societies. The sub-disciplines of materials sciences of interest in this review are nanomaterials sciences and nanotechnology. Nanomaterials possess one external dimension measuring 1-100 nm. They have larger surface area for the same mass than their bulk materials. They are more reactive with effects on their electrical, optical and magnetic properties. Thus, nanomaterials are promising for sustainable development in the areas of energy, water, chemicals, electronics, medical and pharmaceutical industries, CO2 mitigation and agriculture. To this end, this review explores the advances in nanomaterials sciences, nanotechnology and the potential applications of nanomaterials for sustainable development. In this review, 73 peer reviewed articles and abstracts were retrieved. The review considered nanomaterials of carbon, inorganic materials, semiconductors, polymeric and lipid based materials. It has been found that nanomaterials sciences and nanotechnology is promising for potential applications in the areas of environmental remediation, energy, food, agriculture, industry, molecular biology, medicine and in pharmaceutical industries for sustainable development. Keywords: nanomaterials sciences, nanotechnology, sustainable development

2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


2020 ◽  
Vol 16 ◽  
Author(s):  
Kannappan Panchamoorthy Gopinath ◽  
Malolan Rajagopal ◽  
Abhishek Krishnan ◽  
Shweta Kolathur Sreerama

Background: Depletion and contamination of environmental resources such as water, air and soil caused by human activities is an increasingly important challenge faced around the world. The consequences of environmental pollution are felt acutely by all living beings, both on a short and long-term basis, thereby making methods of remediation of environmental pollution an urgent requirement. Objectives: The objective of this review is to dissect the complications caused by environmental degradation, highlight advancements in the field of nanotechnology and to scrutinize its applications in environmental remediation. Furthermore, the review aims to concisely explain the merits and drawbacks of nanotechnology compared to existing methods. Conclusion: The current and potential applications of nanomaterials and nanocomposites in the prevention, control and reduction of air, water and soil pollution and the mechanisms involved have been elucidated, as have their various merits and demerits. The applications of nanotechnology in the fields of carbon capture and agriculture have also received attention in this review.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 584
Author(s):  
Hafza Fasiha Zahid ◽  
Chaminda Senaka Ranadheera ◽  
Zhongxiang Fang ◽  
Said Ajlouni

Among the waste by-products generated by the fruit industry (peels, seeds, and skins), fruit peel constitutes the major component. It is estimated that fruit peel accounts for at least 20% of the fresh fruit weight. Fruit peels are considered as major sources of dietary fiber and anticipated to be successfully utilized as prebiotics. This study examined the chemical composition, functional properties and the prebiotic effects of three major tropical fruit peels (apple, banana and mango). The prebiotic effect was tested using three commercial probiotic strains (Lactobacillus rhamnosus, L. casei and Bifidobacterium lactis) individually and in combination. Each probiotic culture was fortified with different concentration (0%, 2% and 4%) of selected fruit peel powder (FPP). Results revealed that all tested FPP significantly (p < 0.05) enhanced the probiotics viable counts, which reached >10 logs after 24 h of incubation. However, the concentration of 2% and 4% FPP showed no significant differences (p > 0.05) on the probiotic viable counts. Additionally, the prebiotic effects of FPP were the same when applied to individual and mixed cultures. This investigation demonstrated that small amount (2%) of apple, banana and mango peel powder could be successfully utilized as prebiotics to enhance the growth of lactic acid bacteria (LAB). Additionally, the studied physical and chemical characteristics of FPP demonstrated their potential applications in the food and pharmaceutical industries as functional ingredients.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Siti Fatimahwati Pehin Dato Musa ◽  
Wei Lee Chin

Purpose The purpose of this paper is to evaluate the role of farm-to-table (FTT) activities in agritourism towards sustainable development based on three agritourism farms in Brunei. Design/methodology/approach The study is based on qualitative data using semi-structured interviews with 23 participants involved in the management of the farms. In-depth interviews are considered the most appropriate approach to gain the unexplored perspectives of the agriculture community at the three agritourism farms. Findings The study found that FTT activities imparted in agritourism contribute towards sustainable development economically, socially and environmentally. FTT leads to the establishment of small medium and micro enterprises, which, in turn, creates employment for the local people. It also plays a part in preserving the ethno-culinary heritage of indigenous food, promoting food localism and sustainable agriculture. These findings suggest that FTT activities play an important role in revitalizing the local community. The outcome of this empirical research may enable planners to better formulate regional policy based on a balanced approach taking into account the three dimensions of sustainability towards agritourism development. From a theoretical standpoint, this study adds value to the literature by identifying the contributions of FTT activities towards sustainable development emphasising on the consumption of local ethnic food and food localism. Originality/value The contributions of agritourism for local farms has not been extensively discussed especially in Brunei’s local agriculture industry. This study will provide evidence that FTT activities contribute towards a moderate form of food activism; one that re-forges the disrupted linkages between people, nature and cultural heritage.


2012 ◽  
Vol 550-553 ◽  
pp. 1124-1127
Author(s):  
Yun Yun Xu ◽  
Tao Zhang ◽  
Xin Nian Li ◽  
Lei Chen ◽  
Hao Wang

Biosurfactants are natural surface-active compounds mainly synthesized by microorganisms, which have distinct advantages like no secondly pollution and friendly to environment compared with chemical surfactants. With the development of modern biological technology, biosurfactants have been shown a variety of potential applications, including medicine, agriculture, oil production and environmental remediation, so it has already caused many researchers a strong interest in the production of biosurfactants making use of biological technology. A review is made from the isolation of biosurfactants. In addition, on the foundation of the analysis,several suggestions about the development of biosurfactants are proposed.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6754
Author(s):  
Gintare Krucaite ◽  
Saulius Grigalevicius

Organic light emitting diode (OLED) is a new, promising technology in the field of lighting and display applications due to the advantages offered by its organic electroactive derivatives over inorganic materials. OLEDs have prompted a great deal of investigations within academia as well as in industry because of their potential applications. The electroactive layers of OLEDs can be fabricated from low molecular weight derivatives by vapor deposition or from polymers by spin coating from their solution. Among the low-molar-mass compounds under investigation in this field, carbazole-based materials have been studied at length for their useful chemical and electronic characteristics. The carbazole is an electron-rich heterocyclic compound, whose structure can be easily modified by rather simple reactions in order to obtain 2,7(3,6)-diaryl(arylamino)-substituted carbazoles. The substituted derivatives are widely used for the formation of OLEDs due to their good charge carrier injection and transfer characteristics, electroluminescence, thermally activated delayed fluorescence, improved thermal and morphological stability as well as their thin film forming characteristics. On the other hand, relatively high triplet energies of some substituted carbazole-based compounds make them useful components as host materials even for wide bandgap triplet emitters. The present review focuses on 2,7(3,6)-diaryl(arylamino)-substituted carbazoles, which were described in the last decade and were applied as charge-transporting layers, fluorescent and phosphorescent emitters as well as host materials for OLED devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


2021 ◽  
Vol 18 ◽  
Author(s):  
Simran Kaur ◽  
Soumava Santra

: Guar gum (GG) is a natural heteropolysaccharide. Due to its non-toxic, eco-friendly, and biodegradable nature, GG has found wide applications in many areas, in particular food, paper, textile, petroleum, and pharmaceutical industries. Therefore, GG is often called “Black Gold” as well. Due to the presence of hydroxyl groups, GG can be modified by various methods. The physical and biological properties of GG can be modulated by chemical modifications. In this manuscript, various methods for the chemical modifications of GG have been discussed according to the type of modifications. Mechanistic insights have also been provided whenever possible. In addition, potential applications of new GG derivatives have also been briefly mentioned.


2020 ◽  
Vol 4 (2) ◽  
pp. 51 ◽  
Author(s):  
Mohamed Kiari ◽  
Raúl Berenguer ◽  
Francisco Montilla ◽  
Emilia Morallón

The hybridization of clay minerals with conducting polymers receives great interest for different potential applications, including environmental remediation. This work studies and compares the electrochemical properties of two different clays, montmorillonite (Mont) and diatomite (Diat), and their respective clay/PEDOT-PSS hybrid materials in H2SO4 medium. The hybrid materials were prepared by electropolymerization of EDOT in the presence of PSS. The physico-chemical and electrochemical properties of both clays were analyzed by different techniques, and the influence of the clay properties on electropolymerization and the electroactivity of the resulting clay/PEDOT-PSS hybrids was investigated. Specifically, the Fe2+/Fe3+ redox probe and the oxidation of diclofenac, as a model pharmaceutical emerging pollutant, were used to test the electron transfer capability and oxidative response, respectively, of the clay/PEDOT-PSS hybrids. The results demonstrate that, despite its low electrical conductivity, the Mont is an electroactive material itself with good electron-transfer capability. Conversely, the Diat shows no electroactivity. The hybridization with PEDOT generally enhances the electroactivity of the clays, but the clay properties affect the electropolymerization efficiency and hybrids electroactivity, so the Mont/PEDOT displays improved electrochemical properties. It is demonstrated that clay/PEDOT-PSS hybrids exhibit diclofenac oxidation capability and diclofenac concentration sensitivity.


Sign in / Sign up

Export Citation Format

Share Document