scholarly journals Large scale quantification of aquifer storage and volumes from the Peninsula and Skurweberg Formations in the southwestern Cape

Water SA ◽  
2019 ◽  
Vol 36 (2) ◽  
pp. 177 ◽  
Author(s):  
Dylan Blake ◽  
Andiswa Mlisa ◽  
Chris Hartnady
Keyword(s):  
2021 ◽  
Author(s):  
Abolfazl Rezaei

Abstract The ability to predict future variability of groundwater resources in time and space is of critical
importance in society’s adaptation to climate variability and change. Periodic control of large scale ocean-atmospheric circulations on groundwater levels proposes a potentially effective source of longer term forecasting capability. In this study, as a first national-scale assessment, we use the continues wavelet transform, global power spectrum, and wavelet coherence analyses to quantify the controls of the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and El Niño Southern Oscillation (ENSO) over the representative groundwater levels of the 24 principal aquifers, scattered across different 14 climate zones of Iran. The results demonstrate that aquifer storage variations are partially controlled by annual to interdecadal climate variability and are not solely a function of pumping variations. Moreover, teleconnections are observed to be both frequency and time specific. The significant coherence patterns between the climate indices and groundwater levels are observed at five frequency bands of the annual (~1-yr), interannual (2-4- and 4-6-yr), decadal (8-12-yr), and interdecadal (14-18yr), consistent with the dominant modes of climate indices. AMO’s strong footprint is observed at interdecadal and annual modes of groundwater levels while PDO’s highest imprint is seen in interannual, decadal, and interdecadal modes. The highest controlling influence of ENSO is observed across the decadal and interannual modes whereas the NAO’s footprint is marked at annual and interdecadal frequency bands. Further, it is observed that the groundwater variability being higher modulated by a combination of large-scale atmospheric circulations rather than each individual index. The decadal and interdecadal oscillation modes constitute the dominant modes in Iranian aquifers. Findings also mark the unsaturated zone contribution in damping and lagging of the climate variability modes, particularly for the higher frequency indices of ENSO and NAO where the groundwater variability is observed to be more correlated with lower frequent climate circulations such as PDO and AMO, rather than ENSO and NAO. Finally, it is found that the data length can significantly affect the teleconnections if the time series are not contemporaneous and only one value of coherence/correlation is computed for each particular series instead of separate computations for different frequency bands and different time spans.


2005 ◽  
Vol 18 (12) ◽  
pp. 1881-1901 ◽  
Author(s):  
Pat J-F. Yeh ◽  
Elfatih A. B. Eltahir

Abstract A lumped unconfined aquifer model has been developed and interactively coupled to a land surface scheme in a companion paper. Here, the issue of the representation of subgrid variability of water table depths (WTDs) is addressed. A statistical–dynamical (SD) approach is used to account for the effects of the unresolved subgrid variability of WTD in the grid-scale groundwater runoff. The dynamic probability distribution function (PDF) of WTD is specified as a two-parameter gamma distribution based on observations. The grid-scale groundwater rating curve (i.e., aquifer storage–discharge relationship) is derived statistically by integrating a point groundwater runoff model with respect to the PDF of WTD. Next, a mosaic approach is utilized to account for the effects of subgrid variability of WTD in the grid-scale groundwater recharge. A grid cell is categorized into different subgrids based on the PDF of WTD. The grid-scale hydrologic fluxes are computed by averaging all of the subgrid fluxes weighted by their fractions. This new methodology combines the strengths of the SD approach and the mosaic approach. The results of model testing in Illinois from 1984 to 1994 indicate that the simulated hydrologic variables (soil saturation and WTD) and fluxes (evaporation, runoff, and groundwater recharge) agree well with the observations. Because of the paucity of the large-scale observations on WTD, the development of a practical parameter estimation procedure is indispensable before the global implementation of the developed scheme of water table dynamics in climate models.


2019 ◽  
Vol 5 (6) ◽  
pp. eaav4574 ◽  
Author(s):  
Laura E. Condon ◽  
Reed M. Maxwell

Groundwater pumping has caused marked aquifer storage declines over the past century. In addition to threatening the viability of groundwater-dependent economic activities, storage losses reshape the hydrologic landscape, shifting groundwater surface water exchanges and surface water availability. A more comprehensive understanding of modern groundwater-depleted systems is needed as we strive for improved simulations and more efficient water resources management. Here, we begin to address this gap by evaluating the impact of 100 years of groundwater declines across the continental United States on simulated watershed behavior. Subsurface storage losses reverberate throughout hydrologic systems, decreasing streamflow and evapotranspiration. Evapotranspiration declines are focused in water-limited periods and shallow groundwater regions. Streamflow losses are widespread and intensify along drainage networks, often occurring far from the point of groundwater abstraction. Our integrated approach illustrates the sensitivity of land surface simulations to groundwater storage levels and a path toward evaluating these connections in large-scale models.


2022 ◽  
Vol 3 ◽  
Author(s):  
Anurag Verma ◽  
Prabhakar Sharma

Growing dependence on groundwater to fulfill the water demands has led to continuous depletion of groundwater levels and, consequently, poses the maintenance of optimum groundwater and management challenge. The region of South Bihar faces regular drought and flood situations, and due to the excessive pumping, the groundwater resources are declining. Rainwater harvesting has been recommended for the region; however, there are no hydrogeological studies concerning groundwater recharge. Aquifer storage and recovery (ASR) is a managed aquifer recharge technique to store excess water in the aquifer through borewells to meet the high-water demand in the dry season. Therefore, this paper presents the hydrogeological feasibility for possible ASR installations in shallow aquifers of South Bihar with the help of flowing fluid electrical conductivity (FFEC) logging. For modeling, the well logging data of two shallow borewells (16- and 47-m depth) at Rajgir, Nalanda, were used to obtain the transmissivity and thickness of the aquifers. The estimated transmissivities were 804 m2/day with an aquifer thickness of 5 m (in between 11 and 16 m) at Ajatshatru Residential Hall (ARH) well. They were 353 and 1,154 m2/day with the aquifer thicknesses of 6 m (in between 16 and 22 m) and 2 m (in between 45 and 47 m), respectively, at Nalanda University Campus (NUC) well. Despite the acceptable transmissivities at these sites, those aquifers may not be fruitful for the medium- to large-scale (more than 100-m3/day injection rate) ASR as the thickness of the aquifers is relatively small and may not efficiently store and withdraw a large amount of water. However, these aquifers can be adequate for small (up to 20-m3/day injection rate) ASR, for example, groundwater recharge using rooftop water. For medium- to large-scale ASR, deeper aquifers need to be further explored on these sites or aquifers with similar characteristics.


2022 ◽  
Vol 9 ◽  
Author(s):  
Ning Wei ◽  
Xiaochun Li ◽  
Zhunsheng Jiao ◽  
Philip H. Stauffer ◽  
Shengnan Liu ◽  
...  

Carbon dioxide (CO2) storage in deep saline aquifers is a vital option for CO2 mitigation at a large scale. Determining storage capacity is one of the crucial steps toward large-scale deployment of CO2 storage. Results of capacity assessments tend toward a consensus that sufficient resources are available in saline aquifers in many parts of the world. However, current CO2 capacity assessments involve significant inconsistencies and uncertainties caused by various technical assumptions, storage mechanisms considered, algorithms, and data types and resolutions. Furthermore, other constraint factors (such as techno-economic features, site suitability, risk, regulation, social-economic situation, and policies) significantly affect the storage capacity assessment results. Consequently, a consensus capacity classification system and assessment method should be capable of classifying the capacity type or even more related uncertainties. We present a hierarchical framework of CO2 capacity to define the capacity types based on the various factors, algorithms, and datasets. Finally, a review of onshore CO2 aquifer storage capacity assessments in China is presented as examples to illustrate the feasibility of the proposed hierarchical framework.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Sign in / Sign up

Export Citation Format

Share Document