scholarly journals Water insecurity, illness and other factors of everyday life: A case study from Choma District, Southern Province, Zambia

Water SA ◽  
2018 ◽  
Vol 44 (4 October) ◽  
Author(s):  
Richard A Marcantonio

Recent reports from the UN find that 2.6 billion people have gained access to improved drinking water sources since 1990, but 663 million people still live without. Other recent work demonstrates that 4 billion people annually face severe water scarcity as a result of seasonal fluctuations in water availability and quality. How is it that, despite the significant development in water resource availability documented by the UN, literally billions of people are regularly experiencing water insecurity? To begin to understand how a lack of access to reliable water resources affects everyday life, I focus on a specific outcome of water insecurity: waterborne illness. Given the difficulty in linking illness to a particular source, this research focuses on perceptions of water safety. I ask participants about illness they perceive coming from their drinking water, conducting face-to-face surveys (N = 224) spatially distributed around Choma town, Southern Province, Zambia. In particular, I investigate how these perceptions affect everyday life and what intersecting factors are likely to increase or decrease the probability of a person perceiving drinking water as the source of their illness. Our findings demonstrate that individual perceptions of waterborne illness are tightly coupled with perceptions of water needs being met or not, water flexibility (water storage capacity and water resource type and number available), total water use, food security and distance to various services. My work identifies and qualifies intersecting relationships that are critical to the design of any policy or other means of intervention intended to reduce experienced and perceived waterborne illness and other everyday needs of subsistence farmers facing the challenges presented by climate change and other forms of environmental change.

Waterlines ◽  
2011 ◽  
Vol 30 (3) ◽  
pp. 212-222 ◽  
Author(s):  
Nam Raj Khatri ◽  
Han Heijnen

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1135
Author(s):  
Carolyn Payus ◽  
Lim Ann Huey ◽  
Farrah Adnan ◽  
Andi Besse Rimba ◽  
Geetha Mohan ◽  
...  

For countries in Southeast Asia that mainly rely on surface water as their water resource, changes in weather patterns and hydrological systems due to climate change will cause severely decreased water resource availability. Warm weather triggers more water use and exacerbates the extraction of water resources, which will change the operation patterns of water usage and increase demand, resulting in water scarcity. The occurrence of prolonged drought upsets the balance between water supply and demand, significantly increasing the vulnerability of regions to damaging impacts. The objectives of this study are to identify trends and determine the impacts of extreme drought events on water levels for the major important water dams in the northern part of Borneo, and to assess the risk of water insecurity for the dams. In this context, remote sensing images are used to determine the degree of risk of water insecurity in the regions. Statistical methods are used in the analysis of daily water levels and rainfall data. The findings show that water levels in dams on the North and Northeast Coasts of Borneo are greatly affected by the extreme drought climate caused by the Northeast Monsoon, with mild to the high risk recorded in terms of water insecurity, with only two of the water dams being water-secure. This study shows how climate change has affected water availability throughout the regions.


2021 ◽  
Vol 13 (2) ◽  
pp. 883
Author(s):  
Changjuan Dong ◽  
Xiaomei Wu ◽  
Zhanyi Gao ◽  
Peiling Yang ◽  
Mohd Yawar Ali Khan

Inefficient and non-environmentally friendly absorbent production can lead to much resource waste and go against low carbon and sustainable development. A novel and efficient Mg-Fe-Ce (MFC) complex metal oxide absorbent of fluoride ion (F−) removal was proposed for safe, environmentally friendly, and sustainable drinking water management. A series of optimization and preparation processes for the adsorbent and batch experiments (e.g., effects of solution pH, adsorption kinetics, adsorption isotherms, effects of coexisting anions, as well as surface properties tests) were carried out to analyze the characteristics of the adsorbent. The results indicated that optimum removal of F− occurred in a pH range of 4–5.5, and higher adsorption performances also happened under neutral pH conditions. The kinetic data under 10 and 50 mg·g−1 were found to be suitable for the pseudo-second-order adsorption rate model, and the two-site Langmuir model was ideal for adsorption isotherm data as compared to the one-site Langmuir model. According to the two-site Langmuir model, the maximum adsorption capacity calculated at pH 7.0 ± 0.2 was 204 mg·g−1. The adsorption of F− was not affected by the presence of sulfate (SO42−), nitrate (NO3−), and chloride (Cl−), which was suitable for practical applications in drinking water with high F− concentration. The MFC adsorbent has an amorphous structure, and there was an exchange reaction between OH− and F−. The novel MFC adsorbent was proven to have higher efficiency, better economy, and environmental sustainability, and be more environmentally friendly.


2013 ◽  
Vol 361-363 ◽  
pp. 674-681
Author(s):  
Wei Li

As more and more non-public fund entering rural drinking water safety engineering project market; it becomes very necessary to built rural drinking water safety engineering project guarantee mechanism. This paper proposes three steps of mechanism design. Firstly, history data is used to fit multivariate linear equation set up describing relationship between bank loss and key risk factors. Secondly, guarantee fee is calculated through model regression, which is threefold of possible bank loss. Thirdly, guarantee fee is adjusted according to variety of key risk factor in the process of project construction and operating.


Author(s):  
Francesca Serio ◽  
Lucia Martella ◽  
Giovanni Imbriani ◽  
Adele Idolo ◽  
Francesco Bagordo ◽  
...  

Background: The quality of water for human consumption is an objective of fundamental importance for the defense of public health. Since the management of networks involves many problems of control and efficiency of distribution, the Water Safety Plan (WSP) was introduced to address these growing problems. Methods: WSP was applied to three companies in which the water resource assumes central importance: five water kiosks, a third-range vegetable processing company, and a residence and care institution. In drafting the plan, the terms and procedures designed and tested for the management of urban distribution systems were applied to safeguard the resource over time. Results: The case studies demonstrated the reliability of the application of the model even to small drinking-water systems, even though it involved a greater effort in analyzing the incoming water, the local intended use, and the possibilities for managing the containment of the dangers to which it is exposed. This approach demonstrates concrete effectiveness in identifying and mitigating the dangers of altering the quality of water. Conclusions: Thanks to the WSP applied to small drinking-water systems, we can move from management that is focused mainly on verifying the conformity of the finished product to the creation of a global risk assessment and management system that covers the entire water supply chain.


2020 ◽  
Vol 19 (10) ◽  
pp. 1813-1822
Author(s):  
Cecilia Caretti ◽  
Roberta Muoio ◽  
Leonardo Rossi ◽  
Daniela Santianni ◽  
Claudio Lubello ◽  
...  

2013 ◽  
Vol 49 (1) ◽  
pp. 5-9 ◽  
Author(s):  
D. C. Reid ◽  
K. Abramowski ◽  
A. Beier ◽  
A. Janzen ◽  
D. Lok ◽  
...  

Traditionally, the regulatory approach to maintaining the quality and safety of drinking water has largely been a prescriptive one based on the ability of any given supply to meet standards set for a number of different chemical and biological parameters. There are a number of issues around the assumptions and the limitations of a sampling and analysis regime. The basis for such regimes is essentially reactive rather than proactive and, consequently, the cause of the concern may already have impacted consumers before any effective action can be taken. Environment and Sustainable Resource Development has developed a template for recording drinking water safety plans together with guidance notes to help complete them. The template has been developed in MS-Excel and has been designed in a straightforward step-wise manner with guidance on the completion of each sheet. It includes four main risk tables covering each main element of water supply which are pre-populated with commonly found ‘generic’ risks and these are carefully assessed before considering what action is required to deal with significant risks. Following completion of the risk tables, key risks are identified and the interventions required to bring them into control.


2003 ◽  
Vol 47 (3) ◽  
pp. 7-14 ◽  
Author(s):  
S.E. Hrudey ◽  
P. Payment ◽  
P.M. Huck ◽  
R.W. Gillham ◽  
E.J. Hrudey

An estimated 2,300 people became seriously ill and seven died from exposure to microbially contaminated drinking water in the town of Walkerton, Ontario, Canada in May 2000. The severity of this drinking water disaster resulted in the Government of Ontario calling a public inquiry by Mr. Justice Dennis O’Connor to address the cause of the outbreak, the role (if any) of government policies in contributing to this outbreak and, ultimately, the implications of this experience on the safety of drinking water across the Province of Ontario. The circumstances surrounding the Walkerton tragedy are an important reference source for those concerned with providing safe drinking water. Although some circumstances are obviously specific to this epidemic, others are uncomfortably reminiscent of waterborne outbreaks that have occurred elsewhere. These recurring themes suggested the need for attention to broad issues of drinking water security and they present the challenge for how drinking water safety can be managed to prevent such tragedies in the future.


Sign in / Sign up

Export Citation Format

Share Document