Influence of Processing on Nutrients in Foods1

1982 ◽  
Vol 45 (4) ◽  
pp. 367-373 ◽  
Author(s):  
DARYL B. LUND

Considerable research effort has been devoted to the effect of processing on nutrients in foods. Yet only recently has a systematic approach been used to identify changes in processes which result in improved nutritional content of the product. The catalyst for this systematic approach has been the generation of kinetic data on the influence of environmental factors on the stability of nutrients which can then be used in process models. The effort to quantify reactions important in foods must continue for both nutrients and toxic constituents, but because of limited resources, we should conscientiously choose which environmental factors and which nutrients or toxic substances will be studied. The example of improving nutrient retention in canned foods by choice of time/temperature treatment and by changing geometry is used to illustrate the application of modeling. Additional research effort is warranted on the effect of water activity on nutrient stability, the generation of toxic substances during processing and the bioavailability of nutrients as influenced by processing.

EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
Michael A. Davis ◽  
Doug R. Sloan ◽  
Gerald Kidder ◽  
R. D. Jacobs

Animal manures have been used as natural crop fertilizers for centuries. Because of poultry manure’s high nitrogen content, it has long been recognized as one of the most desirable manures. Besides fertilizing crops, manures also supply other essential plant nutrients and serve as a soil amendment by adding organic matter, which helps improve the soil’s moisture and nutrient retention. Organic matter persistence will vary with temperature, drainage, rainfall, and other environmental factors. This 2-page fact sheet was written by Michael A. Davis, D.R. Sloan, Gerald Kidder, and R.D. Jacobs, and published by the UF Department of Animal Science, November 2013. http://edis.ifas.ufl.edu/aa205


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 50
Author(s):  
Barbara D. Weiß ◽  
Michael Harasek

This review studies unwanted precipitation reactions, which can occur in SO2 absorption processes using a magnesium hydroxide slurry. Solubility data of potential salts in the MgO-CaO-SO2-H2O system are evaluated. The reviewed data can serve as a reliable basis for process modeling of this system used to support the optimization of the SO2 absorption process. This study includes the solubility data of MgSO3, MgSO4, Mg(OH)2, CaSO3, CaSO4, and Ca(OH)2 as potential salts. The solubility is strongly dependent on the state of the precipitated salts. Therefore, this review includes studies on the stability of different forms of the salts under different conditions. The solubility data in water over temperature serve as a base for modeling the precipitation in such system. Furthermore, influencing factors such as pH value, SO2 content and the co-existence of other salts are included and available data on such dependencies are reviewed. Literature data evaluated by the International Union of Pure and Applied Chemistry (IUPAC) are revisited and additional and newer studies are supplemented to obtain a solid base of accurate experimental values. For temperatures higher than 100 °C the available data are scarce. For a temperature range from 0 to 100 °C, the reviewed investigations and data provide a good base to evaluate and adapt process models for processes in order to map precipitations issues accurately.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1127
Author(s):  
Alison Small ◽  
Andrew David Fisher ◽  
Caroline Lee ◽  
Ian Colditz

Increasing societal and customer pressure to provide animals with ‘a life worth living’ continues to apply pressure on livestock production industries to alleviate pain associated with husbandry practices, injury and illness. Over the past 15–20 years, there has been considerable research effort to understand and develop mitigation strategies for painful husbandry procedures in sheep, leading to the successful launch of analgesic approaches specific to sheep in a number of countries. However, even with multi-modal approaches to analgesia, using both local anaesthetic and non-steroidal anti-inflammatory drugs (NSAID), pain is not obliterated, and the challenge of pain mitigation and phasing out of painful husbandry practices remains. It is timely to review and reflect on progress to date in order to strategically focus on the most important challenges, and the avenues which offer the greatest potential to be incorporated into industry practice in a process of continuous improvement. A structured, systematic literature search was carried out, incorporating peer-reviewed scientific literature in the period 2000–2019. An enormous volume of research is underway, testament to the fact that we have not solved the pain and analgesia challenge for any species, including our own. This review has highlighted a number of potential areas for further research.


Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1695-1700 ◽  
Author(s):  
A. Murillo-Williams ◽  
G. P. Munkvold

Fusarium verticillioides causes seedling decay, stalk rot, ear rot, and mycotoxin contamination (primarily fumonisins) in maize. Systemic infection of maize plants by F. verticillioides can lead to kernel infection, but the frequency of this phenomenon has varied widely among experiments. Variation in the incidence of systemic infection has been attributed to environmental factors. In order to better understand the influence of environment, we investigated the effect of temperature on systemic development of F. verticillioides during vegetative and reproductive stages of plant development. Maize seeds were inoculated with a green fluorescent protein-expressing strain of F. verticillioides, and grown in growth chambers under three different temperature regimes. In the vegetative-stage and reproductive-stage experiments, plants were evaluated at tasseling (VT stage), and at physiological maturity (R6 stage), respectively. Independently of the temperature treatment, F. verticillioides was reisolated from nearly 100% of belowground plant tissues. Frequency of reisolation of the inoculated strain declined acropetally in aboveground internodes at all temperature regimes. At VT, the high-temperature treatment had the highest systemic development of F. verticillioides in aboveground tissues. At R6, incidence of systemic infection was greater at both the high- and low-temperature regimes than at the average-temperature regime. F. verticillioides was isolated from higher internodes in plants at R6, compared to stage VT. The seed-inoculated strain was recovered from kernels of mature plants, although incidence of kernel infection did not differ significantly among treatments. During the vegetative growth stages, temperature had a significant effect on systemic development of F. verticillioides in stalks. At R6, the fungus reached higher internodes in the high-temperature treatment, but temperature did not have an effect on the incidence of kernels (either symptomatic or asymptomatic) or ear peduncles infected with the inoculated strain. These results support the role of high temperatures in promoting systemic infection of maize by F. verticillioides, but plant-to-seed transmission may be limited by other environmental factors that interact with temperature during the reproductive stages.


2012 ◽  
pp. 1613-1637
Author(s):  
William Stuart Miller ◽  
Joshua D. Summers

A new design process modeling approach focused on the information flow through design tools is discussed in this chapter. This approach is applied to three long term mechanical engineering design projects spanning 24 months, 12 months, and 4 months. These projects are used to explore the development of the new modeling approach. This is a first step in a broader effort in 1) modeling of design processes, 2) establishing case study research as a formal approach to design research, and 3) developing new design process tools. The ability of engineers to understand the dynamic nature of information throughout the design processes is critical to their ability to complete these tasks. Such understanding promotes learning and further exploration of the design process allowing the improvement of process models, the establishment of new research approaches, and the development of new tools. Thus, enhancing this understanding is the goal of this research effort.


2017 ◽  
Vol 11 (6) ◽  
pp. 958-963
Author(s):  
Koji Teramoto ◽  
◽  
Takahiro Kunishima ◽  
Hiroki Matsumoto

Elastomer end-milling is attracting attention for its role in the small-lot production of elastomeric parts. In order to apply end-milling to the production of elastomeric parts, it is important that the workpiece be held stably to avoid deformation. To evaluate the stability of workholding, it is necessary to predict cutting forces in elastomer end-milling. Cutting force prediction for metal workpiece end-milling has been investigated for many years, and many process models for end-milling have been proposed. However, the applicability of these models to elastomer end-milling has not been discussed. In this paper, the characteristics of the cutting force in elastomer end-milling are evaluated experimentally. A standard cutting force model and its parameter identification method are introduced. By using this cutting force model, measured cutting forces are compared against the calculated results. The comparison makes it clear that the standard cutting force model for metal end-milling can be applied to down milling for a rough evaluation.


1994 ◽  
Vol 45 (8) ◽  
pp. 1369 ◽  
Author(s):  
PI Boon ◽  
MA Brock

It is easy to gain an impression from the recent contents of Australian scientific journals dealing with ecological research that little attention is paid to the botanical ecology of Australia's inland wetlands. Less than 1% of the papers published in key Australian ecological journals over 1987-93 dealt with some aspect of the vegetation ecology of these environments. Yet over the period 1982-94 research on this topic accounted for up to 23% of the papers presented at annual conferences of the two major Australian scientific societies to which Australian limnologists are likely to belong. This discrepancy indicates that wetland vegetation is the subject of a considerable research effort by Australian limnologists, but that few of their research findings are published in refereed Australian journals. Analyses of the references cited in key review articles suggests that refereed journals outside Australia cannot account fully for the 'missing' publications: we demonstrate that much research is placed in the largely inaccessible 'grey literature' published by government departments and the like. It is also possible that some research is destined never to be published. This imbalance between the intensity of the research effort and the history of publication in Australian refereed journals prompted local scientists involved in wetland research to participate in a Special Issue dedicated to the botanical and process-oriented aspects of wetland ecology.


Author(s):  
YE WANG ◽  
XIAOHU YANG ◽  
XINYU WANG ◽  
ALEKSANDER J. KAVS

Satisfying quality requirements for service systems is quite crucial and challenging. However, there is a gap between quality requirements analysis and quality requirements design in service systems. In order to bridge this gap, we provide a systematic approach — ProQRASS — to model and analyze quality requirements of services based on business processes, which are frequently used to model services. ProQRASS consists of five steps: (1) constructing business process models; (2) associating quality requirements with functional requirements of services in business process models; (3) identifying potential conflicts and cooperation among quality requirements; (4) filtering out false conflicts and cooperation; (5) resolving conflicts among quality requirements. We illustrate ProQRASS through an equity trading service system. We also evaluate its capability through the comparison with other approaches and conduct a usability investigation involving industrial experts. The result shows that ProQRASS is effective and useful.


2008 ◽  
Vol 38 ◽  
pp. 1-6
Author(s):  
Susan Drozdz ◽  
Vincent F. Hock ◽  
David Hurt ◽  
Stephen Maloney

Scale, corrosion and the and biological growth in industrial water handling processes result in reduced water flow though pipes, reduced heat transfer, and pump failures. Preventative treatments for these problems are based upon chemical compounds that are most often toxic and environmentally persistent. Manufacturers continue to introduce new chemicals and treatment programs onto the market, and old products have been discontinued. Many manufacturers claim that the new chemical and treatments are more environmentally friendly and safer for the plant workers and the users. The U.S. Army Engineer Research and Development Center Construction Engineering Research Laboratory has undertaken a research effort to look at these new chemical treatments. The objective of this work was to develop “green” water treatment chemicals that control biological growth, corrosion and scale while reducing or eliminating the generation of toxic substances during the manufacture, use, and disposal processes.


Sign in / Sign up

Export Citation Format

Share Document