Manganese and Lactic Acid Bacteria

1985 ◽  
Vol 48 (10) ◽  
pp. 895-898 ◽  
Author(s):  
M. RACCACH

Manganese (Mn), in trace quantities, is essential for growth and metabolic activities of lactic acid bacteria (LAB). The requirement for Mn has a certain degree of specifity and cannot be completely replaced by other metals. Frozen storage of LAB, species/subspecies, type of fermentable carbohydrate, interaction with other ions and chloride salts affect the extent of stimulation by Mn of LAB. Some applications of the stimulation by Mn of LAB are a bioassay for determination of this metal and its use as an aid in lactic acid fermentation of meat and plant foods. The biological effects of Mn are associated with structure/activation of enzymes, especially those involved in use of carbohydrates. Mn was also found to detoxify the superoxide radical, which is harmful to the bacterial cell, and to stabilize subcellular entities.

1984 ◽  
Vol 47 (9) ◽  
pp. 670-671 ◽  
Author(s):  
M. RACCACH

Arrhenius plots for the fermentation of dextrose in meat by Pediococcus acidilactici and Pediococcus pentosaceus showed discontinuities at 32 and 24°C, respectively. The Arrhenius energy of activation (Ea) of P. pentosaceus was 25% lower than that of P. acidilactici at temperatures above the discontinuity. The Ea of P. acidilactici and of P. pentosaceus increased about 2- and 3-fold, respectively, at temperatures below the discontinuity. The Ea can be used for selection of efficient starter culture strains. The temperature of discontinuity may be used to determine the lowest efficient temperature for lactic acid fermentation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chatchai Kaewpila ◽  
Pongsatorn Gunun ◽  
Piyawit Kesorn ◽  
Sayan Subepang ◽  
Suwit Thip-uten ◽  
...  

AbstractImproving the nutrition of livestock is an important aspect of global food production sustainability. This study verified whether lactic acid bacteria (LAB) inoculant could promote ensiling characteristics, nutritive value, and in vitro enteric methane (CH4) mitigation of forage sorghum (FS) mixture silage in attacking malnutrition in Zebu beef cattle. The FS at the soft dough stage, Cavalcade hay (CH), and cassava chip (CC) were obtained. The treatments were designed as a 4 × 2 factorial arrangement in a completely randomized design. Factor A was FS prepared without or with CH, CC, and CH + CC. Factor B was untreated or treated with Lactobacillus casei TH14. The results showed that all FS mixture silages preserved well with lower pH values below 4.0 and higher lactic acid contents above 56.4 g/kg dry matter (DM). Adding LAB boosted the lactic acid content of silages. After 24 h and 48 h of in vitro rumen incubation, the CC-treated silage increased in vitro DM digestibility (IVDMD) with increased total gas production and CH4 production. The LAB-treated silage increased IVDMD but decreased CH4 production. Thus, the addition of L. casei TH14 inoculant could improve lactic acid fermentation, in vitro digestibility, and CH4 mitigation in the FS mixture silages.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 768
Author(s):  
Christos Bontsidis ◽  
Athanasios Mallouchos ◽  
Antonia Terpou ◽  
Anastasios Nikolaou ◽  
Georgia Batra ◽  
...  

On the frame of this research survey, a novel potentially probiotic strain (Lactobacillus paracasei SP5) recently isolated from kefir grains was evaluated for chokeberry juice fermentation. Chokeberry juice was retrieved from the variety Aronia melanocarpa, a plant known to provide small, dark berries and to be one of the richest sources of antioxidants. The juice was subsequently fermented inoculating L. paracasei SP5 for 48 h at 30 °C. The fermented juices were left at 4 °C and tested regarding microbiological and physicochemical characteristics for 4 weeks. The potentially probiotic strain was proved capable of performing lactic acid fermentation at 30 °C. Cell viability of L. paracasei was detected in high levels during fermentation and the whole storage period, while the fermented juice showed higher levels of viability in juice with 40.3 g/L of initial sugar concentration. No ethanol was detected in the final fermented juice. Fermented chokeberry juice was characterized by aromatic desirable volatiles, which were retained in adequate levels for the whole storage period. Specifically, the occurrence of organic esters detected in fermented juices is considered as positive evidence of the provision of fruity and floral notes to the final product. During storage, total phenolics content and antioxidant activity were observed in higher levels in fermented chokeberry juice compared with non-fermented juice. Subsequently, fermentation of chokeberry juice by potentially probiotic lactic acid bacteria could provide high industrialization potential, providing the market with a nutritional beverage of good volatile quality with an enhanced shelf-life compared with an unfermented fresh juice.


10.5219/1604 ◽  
2021 ◽  
Vol 15 ◽  
pp. 995-1004
Author(s):  
Aleš Vavřiník ◽  
Kateřina Štůsková ◽  
Adrian Alumbro ◽  
Methusela Perrocha ◽  
Lenka Sochorová ◽  
...  

The presented work aimed to study the inhibition using nanoparticles produced by the green synthesis in selected acetic acid and lactic acid bacteria, which are related to viticulture. The degree of ability to eliminate silver particles produced by green syntheses was determined using the plate method on Petri dishes. This is done using two different approaches - the method of direct application of the solution to the surface of the inoculated medium (determination of inhibition zones) and the method of application using nanoparticles to the inoculated medium. Gluconobacter oxydans (CCM 3618) and Acetobacter aceti (CCM 3620T) were studied from acet acetic bacteria. The lactic acid bacteria were Lactobacillus brevis (CCM 1815) and Pediococcus damnosus (CCM 2465). The application of silver nanoparticles was always in concentrations of 0, 0.0625, 0.125, 0.25, 0.5, and 1 g.L-1. All applied concentrations of silver nanoparticles showed an inhibitory effect on the monitored microorganisms. Silver particles could be used in wine technology for their antibacterial effects, mainly to inhibit microorganisms during vinification, as a substitute for sulfur dioxide.


2019 ◽  
Vol 366 (Supplement_1) ◽  
pp. i60-i67
Author(s):  
Mette Lübeck ◽  
Peter Stephensen Lübeck

ABSTRACT Lactic acid bacteria (LAB) have extensive industrial applications as producers of lactic acid, as probiotics, as biocontrol agents and as biopreservatives. LAB play a large role in food fermentation and in silage processes, where crops such as grass, legumes, cereals or corn are fermented into high-moisture feed that is storable and can be used to feed cattle, sheep or other ruminants. LAB also have great applications within green biorefineries, with simultaneous production of protein-rich feed for monogastric animals, silage or feed pellets for ruminants and production of lactic acid or specific amino acids. In green biorefineries, fresh or ensiled wet biomass is mechanically fractionated into green juice and solid residues (press cake), where the plant juice, for example, can be used for production of lactic acid using LAB. In a process named ‘ENLAC’, recovery of protein and chlorophyll from silage by simultaneous lactic acid fermentation and enzyme hydrolysis has been developed. Furthermore, a process for protein recovery was recently developed by applying a specific LAB starter culture to green juice from freshly harvested crops. This paper focuses on reviewing LAB for their applications within biorefining of ‘green’ crops such as clover, alfalfa, grasses and other green plant materials.


Sign in / Sign up

Export Citation Format

Share Document