Lysozyme and Lipase Alter Unfrozen and Frozen/Thawed Cells of Listeria monocytogenes

1992 ◽  
Vol 55 (10) ◽  
pp. 777-781 ◽  
Author(s):  
SOUZAN E. EL-KEST ◽  
ELMER H. MARTH

Unfrozen and frozen/thawed cells of Listeria monocytogenes strains Scott A, V7, and California were treated with lipase and/or lysozyme. Cells of strain Scott A were more susceptible to the lytic action of lysozyme than were cells of strains V7 and California. Treatment of unfrozen cells with lipase before exposure to lysozyme enhanced cellular lysis. This also was true for cells held frozen for up to 6 weeks before they were thawed and treated with enzymes. Some variation existed among strains of L. monocytogenes in their susceptibility to effects of lysozyme. Frozen storage of cells of all three strains increased their susceptibility to lysis by lipase, and this was related inversely with the percentage of cells that survived freezing and frozen storage. Transmission electron microscopy showed some enzyme-treated cells formed protoplasts.

1992 ◽  
Vol 55 (9) ◽  
pp. 687-696 ◽  
Author(s):  
SOUZAN E. EL-KEST ◽  
ELMER H. MARTH

Unfrozen cells of Listeria monocytogenes typically contained no preplasma space exterior to the plasma membrane (PM) when viewed by transmission electron microscopy. Cells of L. monocytogenes strains Scott A, V7, and California (CA), after freezing and frozen storage, exhibited one or more of the following when viewed with transmission electron microscopy: (a) retraction of cytoplasm and infolding of the PM to form mesosomes, (b) extra-and intracellular rupture of the cell wall (CW), (c) formation of intracellular “bubbles,” and (d) damage to the CW and PM that could have resulted from autolysin activity. Type and degree of effect depended on frozen storage time and strain of L. monocytogenes. Lysozyme treatment of unfrozen or frozen/stored (19 d)/thawed cells of strains Scott A, V7, and CA resulted in protoplast formation and damage to the CW. Three stages of protoplast formation were observed when cells of strain CA were frozen, stored 2 weeks, thawed, and treated with lysozyme. More damage to the CW and PM occurred when frozen storage time was extended for up to 6 weeks before treatment with lysozyme. Lipase and lysozyme treatment of unfrozen or frozen/stored (19 d)/thawed cells of strain Scott A resulted in protoplast formation with some damage to the PM and irregularity in shape of cells. Damage to the PM increased with increasing frozen storage time for up to 6 weeks. Some cells of strain CA resisted freezing, frozen storage for 6 weeks, thawing, and treatment with lipase and lysozyme.


2008 ◽  
Vol 71 (10) ◽  
pp. 2105-2109 ◽  
Author(s):  
T. SIVAROOBAN ◽  
N. S. HETTIARACHCHY ◽  
M. G. JOHNSON

The objective of this study was to use transmission electron microscopy to investigate the morphological changes that occurred in Listeria monocytogenes cells treated with grape seed extract (GSE), green tea extract (GTE), nisin, and combinations of nisin with either GSE or GTE. The test solutions were prepared with (i) 1% GSE, 1% GTE, 6,400 IU of nisin, and the combination of these dilutions with nisin or with (ii) the pure major phenolic constituents of GSE (0.02% epicatechin plus 0.02% catechin) or GTE (0.02% epicatechin plus 0.02% caffeic acid) and their combinations with 6,400 IU of nisin in tryptic soy broth with 0.6% yeast extract (TSBYE). Test solutions were inoculated with L. monocytogenes at approximately 106 CFU/ml and incubated for 3 or 24 h at 37°C. After 3 h of incubation, cells were harvested and evaluated under a transmission electron microscope (JEOL-100 CX) operating at 80 kV (50,000×). Microscopic examination revealed an altered cell membrane and condensed cytoplasm when L. monocytogenes cells were exposed to a combination of nisin with either GSE or GTE or to pure compounds of the major phenolic constituents in combination. After 24 h of incubation at 37°C, the combinations of nisin with GSE and nisin with GTE reduced the L. monocytogenes population to undetectable levels and 3.7 log CFU/ml, respectively. These observations indicate that the combination of nisin with either GSE or GTE had a synergistic effect, and the combinations of nisin with the major phenolic constituents were most likely associated with the L. monocytogenes cell damage during inactivation in TSBYE at 37°C.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
R.R. Russell

Transmission electron microscopy of metallic/intermetallic composite materials is most challenging since the microscopist typically has great difficulty preparing specimens with uniform electron thin areas in adjacent phases. The application of ion milling for thinning foils from such materials has been quite effective. Although composite specimens prepared by ion milling have yielded much microstructural information, this technique has some inherent drawbacks such as the possible generation of ion damage near sample surfaces.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Sign in / Sign up

Export Citation Format

Share Document