Evaluation of Sodium Diacetate and ALTA™ 2341 on Viability of Listeria monocytogenes in Turkey Slurries

1993 ◽  
Vol 56 (9) ◽  
pp. 808-810 ◽  
Author(s):  
JIMMY H. SCHLYTER ◽  
ALAN J. DEGNAN ◽  
JODI LOEFFELHOLZ ◽  
KATHLEEN A. GLASS ◽  
JOHN B. LUCHANSKY

The antilisterial activity of sodium diacetate and a commercial shelf-life extender (ALTA™ 2341) were monitored at 25°C in slurries prepared with turkey breast meat. In slurries prepared without either ingredient, populations of Listeria monocytogenes increased about 5-log10 units in 7 d. The addition of 0.3% diacetate extended the generation time (7 h) compared to the control (no food additives; 1.7 h), whereas 0.5% inhibited the pathogen somewhat (0.4-log10 unit decrease in 7 d compared to the control). Slurries containing ALTA (0.25, 0.5, or 0.75%) and 0.3% diacetate extended the lag phase of L. monocytogenes to a greater extent than slurries with 0.3% diacetate alone. In contrast, 0.5% diacetate in combination with all three levels of ALTA tested was listericidal (ca. 2-log10 unit decrease after 7 d compared to the control). These data confirm the efficacy of diacetate for inhibiting L. monocytogenes in turkey meat and indicate that multiple barriers such as diacetate with ALTA may further lessen the likelihood of food-related listeriosis.

2005 ◽  
Vol 68 (3) ◽  
pp. 499-506 ◽  
Author(s):  
ZHENG LU ◽  
JOSEPH G. SEBRANEK ◽  
JAMES S. DICKSON ◽  
AUBREY F. MENDONCA ◽  
THEODORE B. BAILEY

Sodium diacetate (SD), sodium diacetate plus potassium benzoate (SD-PB), and sodium lactate plus sodium diacetate plus potassium benzoate (SL-SD-PB) were selected for initial effectiveness against Listeria monocytogenes on frankfurters. Treatments were evaluated at −2.2, 1.1, 4.4, 10.0, and 12.8°C for up to 90 days. The compounds were applied as 3 or 6% (total concentration) dipping solutions for surface treatment of the frankfurters. The treated frankfurters were inoculated with a five-strain cocktail of L. monocytogenes (Scott A 4b, H7764 1/2a, H7962 4b, H7762 4b, and H7969 4b) using 1 ml of 104 cells for each 90.8-g package of two frankfurters. The maximum population of L. monocytogenes was decreased and generation time and lag phase were increased after surface treatments with 6% SD, 6% SL-SD-PB, 3% SD-PB, and 6% SD-PB solutions at 1.1°C. Surface treatment of frankfurters with SD at 6% was more effective for inhibiting L. monocytogenes growth than were the other treatments. Under the conditions of this study, L. monocytogenes survived in refrigerated storage even in the presence of the additives tested.


1999 ◽  
Vol 62 (1) ◽  
pp. 51-56 ◽  
Author(s):  
MOSFFER M. AL-DAGAL ◽  
WAEL A. BAZARAA

Microbiological and sensory characteristics of treated whole and peeled shrimp from the east coast of Saudi Arabia were evaluated. Shrimp samples were treated with organic acid salts with or without Bifidobacterium breve culture and stored in ice. Peeling alone extended the microbiological shelf life by 4 days. Treatment of whole shrimp with sodium acetate alone or potassium sorbate with bifidobacteria prolonged the microbiological shelf life by 3 days and increased the microbial generation time from 12.8 h (control) to 30.1 h or 31.4 h, respectively. The microbiological and sensory shelf life of peeled shrimp treated with sodium acetate was more than 17 days. Sodium acetate extended the microbial lag phase and lengthened the generation time (38.7 h compared to 15.8 h for the control). Micrococci and coryneforms were the predominant microorganisms in whole shrimp during storage. Treatment with sodium acetate maintained better sensory characteristics for peeled shrimp than potassium sorbate combined with bifidobacteria.


2007 ◽  
Vol 70 (10) ◽  
pp. 2297-2305 ◽  
Author(s):  
L. A. MELLEFONT ◽  
T. ROSS

Two commercially available organic acid salts, potassium lactate (PURASAL HiPure P) and a potassium lactate–sodium diacetate blend (PURASAL Opti.Form PD 4), were assessed as potential inhibitors of Listeria monocytogenes growth in modified atmosphere packaged (MAP) sliced ham in challenge studies. The influence of the initial inoculation level of L. monocytogenes (101 or 103 CFU g−1) and storage temperature (4 or 8°C) was also examined. The addition of either organic acid salt to MAP sliced ham strongly inhibited the growth of L. monocytogenes during the normal shelf life of the product under ideal refrigeration conditions (4°C) and even under abusive temperature conditions (i.e., 8°C). During the challenge studies and in the absence of either organic acid salt, L. monocytogenes numbers increased by 1,000-fold after 20 days at 8°C and 10-fold after 42 days at 4°C. Both organic acid salt treatments were found to be listeriostatic rather than listericidal. The addition of either organic acid salt to the MAP ham also reduced the growth of indigenous microflora, i.e., aerobic microflora and lactic acid bacteria. The influence of these compounds on the risk of listeriosis in relation to product shelf life is discussed.


2015 ◽  
Vol 36 (6) ◽  
pp. 3681
Author(s):  
Cleonice Mendes Pereira Sarmento ◽  
Eliane Colla ◽  
Cristiane Canan ◽  
Francieli Dalcanton ◽  
Gláucia Maria Falcão de Aragão

The uncontrolled growth of lactic acid bacteria (LAB) in meat and meat products leads to product spoilage, and thus shortens product shelf life. Although food additives are known to decrease LAB growth, this effect has not been analyzed in detail. Here, a detailed analysis was performed of the effects of sodium chloride, sodium polyphosphate, sodium lactate, sodium nitrite/nitrate, and garlic on the growth of the Lactobacillus plantarum in culture medium. The results were used to design and test experimental formulations of meat products. Initially, the effect of food additives on L. plantarum was evaluated using a Fractional Factorial Design (FFD), followed by a Central Composite Rotatable Design (CCRD). The Modified Gompertz Model was adjusted to the growth curves to determine the Kinetic parameters of bacterial growth (logarithmic increase in the population, specific growth rate, and lag phase extension). Higher sodium lactate and sodium chloride levels had a negative impact on L. plantarum growth parameters (p?0.05). Therefore, we designed experimental formulations of mortadella and smoked pork sausages containing 4% sodium lactate (w w-1) and 2.4-3.5% sodium chloride (w w-1), and determined LAB growth from samples of stored products produced according to these formulations, in order to determine product shelf life. There was an increased lag phase of LAB growth for most experimental formulations. Also, the experimental smoked pork sausages had a longer shelf life, which was increased by at least 22 days, suggesting that the proposed formulation, with higher than standard lactate concentration, increased the product’s shelf life.


2006 ◽  
Vol 69 (1) ◽  
pp. 53-61 ◽  
Author(s):  
IFIGENIA GEORNARAS ◽  
PANAGIOTIS N. SKANDAMIS ◽  
KEITH E. BELK ◽  
JOHN A. SCANGA ◽  
PATRICIA A. KENDALL ◽  
...  

The antilisterial effect of postprocess antimicrobial treatments on commercially manufactured frankfurters formulated with and without a 1.5% potassium lactate–0.05% sodium diacetate combination was evaluated. Frankfurters were inoculated (ca. 3 to 4 log CFU/cm2) with 10-strain composite Listeria monocytogenes cultures originating from different sources. The inocula evaluated were cells grown planktonically in tryptic soy broth plus 0.6% yeast extract (30°C, 24 h) or in a smoked sausage homogenate (15°C, 7 days) and cells that had been removed from stainless steel coupons immersed in an inoculated smoked sausage homogenate (15°C, 7 days). Inoculated frankfurters were dipped (2 min, 25 ± 2°C) in acetic acid (AA; 2.5%), lactic acid (LA; 2.5%), potassium benzoate (PB; 5%), or Nisaplin (commercial form of nisin; 0.5%, equivalent to 5,000 IU/ml of nisin) solutions, or in Nisaplin followed by AA, LA, or PB, and were subsequently vacuum packaged and stored for 48 days at 10°C. In addition to microbiological analyses, sensory evaluations were performed with uninoculated samples that had been treated with AA, LA, or PB for 2 min. Initial L. monocytogenes populations were reduced by 1.0 to 1.8 log CFU/cm2 following treatment with AA, LA, or PB solutions, and treatments that included Nisaplin reduced initial levels by 2.4 to >3.8 log CFU/cm2. All postprocessing treatments resulted in some inhibition of L. monocytogenes during the initial stages of storage of frankfurters that were not formulated with potassium lactate–sodium diacetate; however, in all cases, significant (P < 0.05) growth occurred by the end of storage. The dipping of products formulated with potassium lactate–sodium diacetate in AA or LA alone—or in Nisaplin followed by AA, LA, or PB—increased lag-phase durations and lowered the maximum specific growth rates of the pathogen. Moreover, depending on the origin of the inoculum, this dipping of products led to listericidal effects. In general, differences in growth kinetics were obtained for the three inocula that were used to contaminate the frankfurters. Possible reasons for these differences include the presence of stress-adapted subpopulations and the inhibition of the growth of the pathogen due to high levels of spoilage microflora. The dipping of frankfurters in AA, LA, or PB did not (P > 0.05) affect the sensory attributes of the product when compared to the control samples. The data generated in this study may be useful to U.S. ready-to-eat meat processors in their efforts to comply with regulatory requirements.


1995 ◽  
Vol 58 (8) ◽  
pp. 908-914 ◽  
Author(s):  
N. R. REDDY ◽  
M. VILLANUEVA ◽  
D. A. KAUTTER

We investigated the shelf life of fresh Tilapia spp. fillets packaged in high-barrier film under both 100% air and a modified atmosphere (MA) of 75% CO2:25% N2, and stored under refrigeration (4°C) and abuse temperatures (8 and 16°C). The chemical spoilage indicators trimethylamine, K-value, and surface pH, as well as microbial counts, were compared with the sensory characteristics of spoilage. For fillets packaged under 100% air, the shelf life was 9 to 13 days at a storage temperature of 4°C, but decreased to 3 to 6 days at 16°C. However, the shelf life of MA-packaged fillets stored at 4°C increased to >25 days when the lag phase and generation time of the bacteria were extended. MA packaged fillets stored under temperature-abuse conditions (8 and 16°C) had a shorter shelf life. The trimethylamine content associated with onset of sensory spoilage for MA packaged fillets increased as storage temperature increased and differed for each temperature. The surface pH and K-values of MA-packaged fillets were not good indicators of spoilage onset.


2010 ◽  
Vol 73 (4) ◽  
pp. 631-640 ◽  
Author(s):  
MATTHEW J. STASIEWICZ ◽  
MARTIN WIEDMANN ◽  
TERESA M. BERGHOLZ

Combinations of organic acids are often used in ready-to-eat foods to control the growth of Listeria monocytogenes during refrigerated storage. The purpose of this study was to quantitatively assess synergy between two organic acid growth inhibitors under conditions similar to those present in cold-smoked salmon, and to assess the effect of evolutionary lineage on response to those growth inhibitors. Thirteen strains of L. monocytogenes, representing lineages I and II, were grown at 7°C in broth at pH 6.1 and 4.65% water-phase NaCl, which was supplemented with 2% potassium lactate, 0.14% sodium diacetate, or the combination of both at the same levels. Our data suggest that lineages adapt similarly to these inhibitors, as the only significant growth parameter difference between lineages was a minor effect (± 0.16 day, P = 0.0499) on lag phase (λ). For all strains, lactate significantly extended λ, from 2.6 ± 0.4 to 3.8 ± 0.5 days (P < 0.001), and lowered the maximum growth rate (μmax) from 0.54 ± 0.06 to 0.49 ± 0.04 log(CFU/ml)/day (P < 0.001), compared with the control. Diacetate was ineffective alone, but in combination with lactate, synergistically increased λ to 6.6 ± 1.6 days (P < 0.001) and decreased μmax to 0.34 ± 0.05 log(CFU/ml)/day (P < 0.001). Monte Carlo simulations provided further evidence for synergy between diacetate and lactate by predicting signficantly slower growth to nominal endpoints for the combination of inhibitors. This study shows potassium lactate and sodium diacetate have significant synergistic effects on both λ and μmax of L. monocytogenes at refrigeration temperature in broth, and justifies combining these inhibitors, at effective levels, in food product formulations.


2008 ◽  
Vol 71 (9) ◽  
pp. 1806-1816 ◽  
Author(s):  
AMIT PAL ◽  
THEODORE P. LABUZA ◽  
FRANCISCO DIEZ-GONZALEZ

This research was conducted to study the growth of Listeria monocytogenes inoculated on frankfurters stored at different conditions as a basis for a safety-based consume by shelf life date label. Three L. monocytogenes strains were separately inoculated at 10 to 20 CFU/cm2 onto frankfurters that were previously formulated with or without high pressure and with or without added 2% potassium lactate (PL) and 0.2% sodium diacetate (SD). Inoculated frankfurters were air or vacuum packaged; stored at 4, 8, or 12°C; and L. monocytogenes and psychrotrophic plate counts were determined for 90, 60, and 45 days, respectively, or until the stationary phase was reached. The data (log CFU per square centimeter versus time) were fitted using the Baranyi-Roberts model to determine maximum growth rates and lag-phase time. The maximum growth rates and the lag time under each growth condition were used to calculate the time to reach 100-fold the initial Listeria population. In frankfurters lacking PL and SD, the count of all strains increased by 2 log after 18 to 50 days at 4°C and 4 to 13 days at 8°C. The growth was inhibited at 4 and 8°C in frankfurters containing PL and SD, but one ribotype was capable of growing, with the time to reach 100-fold the initial Listeria population ranging from 19 to 35 days at 12°C. In most cases, the time to reach 100-fold the initial Listeria population of L. monocytogenes was significantly longer in vacuum-packaged frankfurters as compared with air-packaged samples. Inclusion of PL and SD also inhibited the growth of psychrotrophs, but at all temperatures the psychrotrophic plate counts were greater than 4 log CFU/cm2 at the end of the experiments. These results indicated that despite the use of antimicrobials, certain L. monocytogenes strains could be capable of growing under storage-abuse conditions. Growth kinetics data could be useful for establishing a shelf life date label protocol under different handling scenarios.


Sign in / Sign up

Export Citation Format

Share Document