Antifungal Activity of the Essential Oil of Origanum syriacum L.

1995 ◽  
Vol 58 (10) ◽  
pp. 1147-1149 ◽  
Author(s):  
RASHA K. DAOUK ◽  
SHAWKY M. DAGHER ◽  
ELSA J. SATTOUT

The volatile oil of the Lebanese Za'atar (Origanum syriacum L.) was characterized for its thymol and carvacrol content using gas-liquid chromatography. These two compounds constituted the major components of the oil and were present in equal proportions of 30% in the volatile oil extracted from the leaves and shoot tips of the Origanum plant during the preflowering stage. The percentage of carvacrol in the essential oil increased to 62% after flowering and maturation, while the concentration of thymol decreased to 14%. Origanum oil extracted from plants collected during midseason was evaluated for its antifungal activity against Aspergillus niger, Fusarium oxysporum, and Penicillium species. The oil exhibited strong inhibitory action against the three fungi tested. The minimum inhibitory concentration (MIC) of the oil was found to be 0.1 μl/ml of yeast extract sucrose broth for the fungi tested.

2014 ◽  
Vol 9 (9) ◽  
pp. 1934578X1400900
Author(s):  
Camila Hernandes ◽  
Silvia H. Taleb-Contini ◽  
Ana Carolina D. Bartolomeu ◽  
Bianca W. Bertoni ◽  
Suzelei C. França ◽  
...  

Reports on the chemical and pharmacological profile of the essential oil of Schinus weinmannifolius do not exist, although other Schinus species have been widely investigated for their biological activities. This work aimed to evaluate the chemical composition and antimicrobial activity of the essential oil of S. weinmannifolius collected in the spring and winter. The essential oils were extracted by hydrodistillation, analyzed by GC/MS and submitted to microdilution tests, to determine the minimum inhibitory concentration. The oils displayed different chemical composition and antimicrobial action. Bicyclogermacrene and limonene predominated in the oils extracted in the winter and spring, respectively, whereas only the latter oil exhibited antifungal activity.


1961 ◽  
Vol 39 (6) ◽  
pp. 1200-1206 ◽  
Author(s):  
E. von Rudloff

The complete analysis of the neutral volatile oil of the leaves of Eastern white cedar (Thujaoccidentalis L.) by means of gas–liquid chromatography was attempted. The mixture of terpenes was resolved into 28 monoterpenoid components and the major ones were isolated in 5- to 20-mg amounts. Comparison of infrared spectra and retention times with those of authentic specimens led to the positive identification of d-α-pinene, camphene, sabinene, d-limonene, p-cymene, γ-terpinene, l-fenchone, l-α-thujone, d-isothujone, camphor, and bornyl acetate. α-Thujene, β-pinene, myrcene, 1,8-cineole, terpinolene, and terpinen-4-ol were tentatively identified. The percentage composition of a commercial sample of the oil and of one obtained from a tree grown in Saskatoon was determined. The latter oil contained 7.0 to 7.5% of sesquiterpenoid components, which were resolved into four peaks on polyester columns at 180 °C.


1968 ◽  
Vol 46 (5) ◽  
pp. 679-683 ◽  
Author(s):  
E. Von Rudloff

The major components of the leaf oil of the Ashe juniper were found to be d-camphor (42.1 %), d-bornyl acetate (22.5%), d-limonene (8.4%), tricyclene (4.8%), d-camphene (4.4%), d-borneol (2.9%), p-cymene (2.8%), d-α-myrcene (1.8%), d-α-pinene (1.7%), and d-camphene hydrate (1.5%). This appears to be the first time that the latter alcohol has been isolated from a natural source. Smaller amounts of linalool, carvone, elemol, and traces of trans-2-methyl-6-methylene-3,7-octadien-2-ol were also identified. Several alcohols having terminal methylene groups were isolated in trace amounts.The monoterpenes found in this oil are not typical for the genus Juniperus and this result offers a unique chemical approach to the study of introgression of the Ashe juniper with other juniper species.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Martin Muthee Gakuubi ◽  
Angeline W. Maina ◽  
John M. Wagacha

The objective of this study was to evaluate the antifungal activity of essential oil (EO) ofEucalyptus camaldulensisDehnh. against fiveFusariumspp. commonly associated with maize.The essential oil had been extracted by steam distillation in a modified Clevenger-type apparatus from leaves ofE. camaldulensisand their chemical composition characterized by gas chromatography mass spectrometry. Poisoned food technique was used to determine the percentage inhibition of mycelial growth, minimum inhibitory concentration, and minimum fungicidal concentration of the EO on the test pathogens. Antifungal activity of different concentrations of the EO was evaluated using disc diffusion method. The most abundant compounds identified in the EO were 1,8-cineole (16.2%),α-pinene (15.6%),α-phellandrene (10.0%), and p-cymene (8.1%). The EO produced complete mycelial growth inhibition in all the test pathogens at a concentration of 7-8 μL/mL after five days of incubation. The minimum inhibitory concentration and minimum fungicidal concentration of the EO on the test fungi were in the range of 7-8 μL/mL and 8–10 μL/mL, respectively. These findings confirm the fungicidal properties ofE. camaldulensisessential oils and their potential use in the management of economically importantFusariumspp. and as possible alternatives to synthetic fungicides.


2019 ◽  
Author(s):  
P. Mezzomo ◽  
T.L. Sausen ◽  
N. Paroul ◽  
S.S. Roman ◽  
A.A.P. Mielniczki ◽  
...  

AbstractBiocompounds are promising tools with the potential to control pathogenic microorganisms. The medicinal plant species Ocotea odorifera, Ocotea puberula and Cinnamodendron dinisii, distributed along Brazilian biomes, are sources of chemical compounds of biological interest. This study aimed to evaluate the antifungal activity of the essential oils of O. odorifera, O. puberula and C. dinisii essential oils upon the mycotoxin producers Alternaria alternata, Aspergillus flavus and Penicillium crustosum. The essential oils where characterized by gas chromatography coupled to mass spectrometer (CG-MS). The majority compounds identified were: safrol (39.23%) and camphor (31.54%) in O. odorifera, Beta-caryophyllene (25.01%) and spathulenol (17.74%) in O. puberula, and bicyclogermacrene (23.19%) and spathulenol (20.21%) in C. dinisii. The Minimal Inhibitory Concentration (MIC) of antifungal activity considered diameters higher than 10 mm after 72 h of incubation at 30 ºC. A. alternata presented higher resistance to O. odorifera and C. dinisii oils. The inhibitory effect of O. odorifera on A. flavus showed stabilization at oils concentrations between 50% and 80%, increasing at 90% and 100% (pure oil) treatments. We observed that the essential oils of O. odorifera and C. dinisii have potential in the control of the analyzed fungi species. The essential oil of O. odorifera presented a better activity in all the assays, which can be related to the presence of safrole and phenylpropenes, compounds with known antifungal activity.


1979 ◽  
Vol 62 (6) ◽  
pp. 1333-1337
Author(s):  
Kalyan G Raghuveer ◽  
Venkatesa S Govindarajan

Abstract Simple and definitive thin layer chromatographic methods are described for the detection of admixtures of Curcuma longa with Curcuma aromatica at the 5% levels. The tests are performed on hexane extracts, thus avoiding distillation of the volatile oil, and are based on the separation of high boiling sesquiterpene compounds by hexane or benzene. Chromatograms are sprayed with vanillin-sulfuric acid or Gibbs reagent to give distinct spots for C. aromatica which are absent from C. longa. Gas chromatography of the extracts also distinguishes the admixtures through a late-eluting peak for C. aromatica.


1966 ◽  
Vol 44 (21) ◽  
pp. 2461-2464 ◽  
Author(s):  
W. B. Cook ◽  
A. S. Howard

The oil of the Japanese star anise tree, Illiciumanisatum Linn., was analyzed by gas–liquid chromatography. The major constituents were found to be cineole (18.1%), linalool (10.1%), methyleugenol (9.8%), α-terpenyl acetate (6.8%), safrole (6.6%), and a sesquiterpene hydrocarbon of unknown constitution (7.2%). The composition of this oil differs widely from that of the commercially used star anise oil obtained from Illiciumverum Hooker. The most striking difference between the two oils is found in the anethole content, which constitutes 88% of the commercial oil but only 1.2% of the oil here investigated.


1964 ◽  
Vol 42 (8) ◽  
pp. 1890-1895 ◽  
Author(s):  
E. von Rudloff ◽  
F. M. Couchman

The neutral leaf oil of Rocky Mountain juniper was analyzed by gas–liquid chromatography. d-Sabinene was found to be the major constituent (45.7%) and smaller amounts of d-limonene (11.4%), d-α-pinene (4.2%), γ-terpinene (1.15%), p-cymene (1.4%), l-linalool (1.2%), d-terpinen-4-ol (2.9%), citronellol (0.2%),l-β-elemene (0.2–0.3%), three isomeric cadinenes (2.7%), l-elemol (6.0%), and safrole (1.85%) were isolated. α-Thujene, camphene, car-3-ene, myrcene, α-terpinene, terpinolene, thujone, isothujone, methyl citronellate, sabinyl acetate, sabinol, geraniol, α- and δ-cadinol, and trans-isoeugenol were tentatively identified. An unidentified acetate (II) (4.7%) was isolated from the oxygenated sesquiterpene fraction and another appears to be present in trace amounts.The composition of the oils from the leaves of four local ornamental plants was found to differ significantly from that of the wild juniper.


Sign in / Sign up

Export Citation Format

Share Document