scholarly journals Comparison of Steam Pasteurization and Other Methods for Reduction of Pathogens on Surfaces of Freshly Slaughtered Beef

1997 ◽  
Vol 60 (5) ◽  
pp. 476-484 ◽  
Author(s):  
RANDALL K. PHEBUS ◽  
ABBEY L. NUTSCH ◽  
DAVID E. SCHAFER ◽  
R. CRAIG WILSON ◽  
M. JAMES RIEMANN ◽  
...  

The effectiveness of a recently invented “steam pasteurization” (S) process in reducing pathogenic bacterial populations on surfaces of freshly slaughtered beef was determined and compared with that of other standard commercial methods including knife trimming (T), water washing (35°C; W), hot water/steam vacuum spot cleaning (V), and spraying with 2% vol/vol lactic acid (54°C, pH 2.25; L). These decontamination treatments were tested individually and in combinations. Cutaneus trunci muscles from freshly slaughtered steers were inoculated with feces containing Listeria monocytogenes Scott A, Escherichia coli OI57:H7, and Salmonella typhimurium over a predesignated meat surface area, resulting in initial populations of ca. 5 log CFU/cm2 of each pathogen. Tissue samples were excised from each portion before and after decontamination treatments, and mean population reductions were determined. Treatment combinations evaluated were the following (treatment designations within the abbreviations indicate the order of application): TW, TWS, WS, VW, VWS, TWLS, and VWLS. These combinations resulted in reductions ranging from 3.5 to 5.3 log CFU/cm2 in all three pathogen populations. The TW, TWS, WS, TWLS, and VWLS combinations were equally effective (P > 0.05), resulting in reductions ranging from 4.2 to 5.3 log CFU/cm2. When used individually, T, V, and S resulted in pathogen reductions ranging from 2.5 to 3.7 log CFU/cm2 Steam pasteurization consistently provided numerically greater pathogen reductions than T or V. Treatments T, V, and S were all more effective than W (which gave a reduction on the order of 1.0 log CFU/cm2). Steam pasteurization is an effective method for reducing pathogenic bacterial populations on surfaces of freshly slaughtered beef, with multiple decontamination procedures providing greatest overall reductions.

2004 ◽  
Vol 67 (8) ◽  
pp. 1630-1633 ◽  
Author(s):  
DEANNA RETZLAFF ◽  
RANDALL PHEBUS ◽  
ABBEY NUTSCH ◽  
JAMES RIEMANN ◽  
CURTIS KASTNER ◽  
...  

A laboratory-scale vertical tower steam pasteurization unit was evaluated to determine the antimicrobial effectiveness of different exposure times (0, 3, 6, 12, and 15 s) and steam chamber temperatures (82.2, 87.8, 93.3, and 98.9°C) against pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua) inoculated onto prerigor beef tissue. Samples were collected and microbiologically analyzed immediately before and after steam treatment to quantify the effectiveness of each time-temperature combination. The 0-s exposure at all chamber temperatures (cold water spray only, no steam treatment) was the experimental control and provided ≤0.3 log CFU/cm2 reductions. Chamber temperatures of 82.2 and 87.8°C were ineffective (P > 0.05) at all exposure times. At 93.3°C, significant reductions (>1.0 log CFU/cm2) were observed at exposure times of ≥6 s, with 15 s providing approximately 1 log cycle greater reductions than 12 s of exposure. The 98.9°C treatment was consistently the most effective, with exposure times of ≥9 s resulting in >3.5 log CFU/cm2 reductions for all pathogens.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2004 ◽  
Vol 67 (12) ◽  
pp. 2703-2711 ◽  
Author(s):  
KONSTANTINOS P. KOUTSOUMANIS ◽  
LAURA V. ASHTON ◽  
IFIGENIA GEORNARAS ◽  
KEITH E. BELK ◽  
JOHN A. SCANGA ◽  
...  

The survival and growth of Listeria monocytogenes and spoilage microflora during storage of fresh beef subjected to different decontamination treatments was studied. Fresh beef inoculated with a five-strain mixture of L. monocytogenes (5.18 log CFU/cm2) was left untreated (control) or was immersed (30 s) in hot water (HW; 75°C), 2% lactic acid (LA; 55°C), hot water followed by lactic acid (HW-LA), or lactic acid followed by hot water (LA-HW) and then stored aerobically at 4, 10, and 25°C for 25, 17, and 5 days, respectively. Initial populations of L. monocytogenes were reduced by 0.82 (HW), 1.43 (LA), 2.73 (HW-LA), and 2.68 (LA-HW) log CFU/cm2. During storage, the pathogen grew at higher rates in HW than in control samples at all storage temperatures. Acid decontamination treatments (LA, HW-LA, and LA-HW) resulted in a weaker inhibition of L. monocytogenes (P < 0.05) at 25°C than at 4 and 10°C. In general, the order of effectiveness of treatments was HW-LA > LA > LA-HW > HW > control at all storage temperatures tested. In untreated samples, the spoilage microflora was dominated by pseudomonads, while lactic acid bacteria, Enterobacteriaceae, and yeasts remained at lower concentrations during storage. Brochothrix thermosphacta was detected periodically in only a limited number of samples. Although decontamination with HW did not affect the above spoilage microbial profile, acid treatments shifted the predominant microflora in the direction of yeasts and gram-positive bacteria (lactic acid bacteria). Overall, the results of the present study indicate that decontamination with LA and combinations of LA and HW could limit growth of L. monocytogenes and inhibit pseudomonads, which are the main spoilage bacteria of fresh beef stored under aerobic conditions. However, to optimize the efficacy of such treatments, they must be applied in the appropriate sequence and followed by effective temperature control.


2008 ◽  
Vol 71 (3) ◽  
pp. 629-633 ◽  
Author(s):  
K. M. GAILUNAS ◽  
K. E. MATAK ◽  
R. R. BOYER ◽  
C. Z. ALVARADO ◽  
R. C. WILLIAMS ◽  
...  

Ready-to-eat meat products have been implicated in several foodborne listeriosis outbreaks. Microbial contamination of these products can occur after thermal processing when products are chilled in salt brines. The objective of this study was to evaluate UV radiation on the inactivation of Listeria monocytogenes and lactic acid bacteria in a model brine chiller system. Two concentrations of brine (7.9% [wt/wt] or 13.2% [wt/wt]) were inoculated with a ~6.0 log CFU/ml cocktail of L. monocytogenes or lactic acid bacteria and passed through a UV treatment system for 60 min. Three replications of each bacteria-and-brine combination were performed and resulted in at least a 4.5-log reduction in microbial numbers in all treated brines after exposure to UV light. Bacterial populations were significantly reduced after 5 min of exposure to UV light in the model brine chiller compared with the control, which received no UV light exposure (P < 0.05). The maximum rate of inactivation for both microorganisms in treated brines occurred between minutes 1 and 15 of UV exposure. Results indicate that in-line treatment of chill brines with UV light reduces the number of L. monocytogenes and lactic acid bacteria.


2007 ◽  
Vol 70 (5) ◽  
pp. 1174-1180 ◽  
Author(s):  
C. E. HELLER ◽  
J. A. SCANGA ◽  
J. N. SOFOS ◽  
K. E. BELK ◽  
W. WARREN-SERNA ◽  
...  

The prevalence of Escherichia coli O157:H7 on beef subprimal cuts intended for mechanical tenderization was evaluated. This evaluation was followed by the assessment of five antimicrobial interventions at minimizing the risk of transferring E. coli O157:H7 to the interior of inoculated subprimal cuts during blade tenderization (BT) or moisture enhancement (ME). Prevalence of E. coli O157:H7 on 1,014 uninoculated beef subprimals collected from six packing facilities was 0.2%. Outside round pieces inoculated with E. coli O157:H7 at 104 CFU/100 cm2 were treated with (i) no intervention, (ii) surface trimming, (iii) hot water (82°C), (iv) warm 2.5% lactic acid (55°C), (v) warm 5.0% lactic acid (55°C), or (vi) 2% activated lactoferrin followed by warm 5.0% lactic acid (55°C) and then submitted to BT or ME. Prevalence (n = 196) of internalized (BT and ME) E. coli O157:H7 was 99%. Enumeration of E. coli O157:H7 (n = 192) revealed mean surface reductions of 0.93 to 1.10 log CFU/100 cm2 for all antimicrobial interventions. E. coli O157:H7 was detected on 3 of the 76 internal BT samples and 73 of the 76 internal ME samples. Internal ME samples with no intervention had significantly higher mean E. coli O157:H7 populations than did those internal samples treated with an intervention, but there were no significant differences in E. coli O157:H7 populations among internal BT samples. Results of this study demonstrate that the incidence of E. coli O157:H7 on the surface of beef subprimal cuts is low and that interventions applied before mechanical tenderization can effectively reduce the transfer of low concentrations of E. coli O157:H7 to the interior of beef subprimal cuts.


Author(s):  
Kourtney A. Daniels ◽  
Katherine Modrow ◽  
Wesley N. Osburn ◽  
Thomas Matt Taylor

Water use for antimicrobial intervention application for beef harvest has come under increased scrutiny in recent years in an effort to enhance water conservation during beef harvest and fabrication. This study was conducted to determine the efficacy of beef safety interventions for reducing surrogates of the Shiga toxin-producing Escherichia coli (STEC) on beef cuts while lowering intervention-purposed water use for a Small or Very Small beef establishment. Beef briskets, shoulder/clods, and rounds were inoculated with a gelatin-based slurry containing 6.8±0.3 log CFU/g non-pathogenic E. coli . After 30 min of attachment, inoculated cuts were treated by: conventional lactic acid spray (LA; 2.5%, 55°C), lactic acid spray delivered by an electrostatic spray handheld wand (ESS; 2.5%, 55°C), hot water spray (HW; 82°C), recycled hot water spray (RW; 82°C) wherein previously applied hot water was collected, thermally pasteurized to 82°C, or left untreated (CON). 100 mL of each treatment was sprayed onto marked surfaces of inoculated cuts, after which surviving surrogate E. coli were enumerated. LA and ESS treatments produced greater reductions (1.0-1.1 log CFU/300 cm 2 ) versus hot water interventions (0.3-0.5 log CFU/300 cm 2 ) ( p =<0.0001). Recycling of water reduced water losses by no less than 45% on RW-treated beef cuts. Low water beef safety interventions offer Small and Very Small inspected beef establishments opportunities to incrementally reduce water use during intervention application, but not necessarily without loss of pathogen reduction efficacy.


2003 ◽  
Vol 66 (6) ◽  
pp. 985-992 ◽  
Author(s):  
J. S. IKEDA ◽  
J. SAMELIS ◽  
P. A. KENDALL ◽  
G. C. SMITH ◽  
J. N. SOFOS

The objective of this study was to evaluate the survival and growth of acid-adapted and nonadapted Listeria monocytogenes inoculated onto fresh beef subsequently treated with acid or nonacid solutions. Beef slices (2.5 by 5 by 1 cm) from top rounds were inoculated with acid-adapted or nonadapted L. monocytogenes (4.6 to 5.0 log CFU/cm2) and either left untreated (control) or dipped for 30 s in water at 55°C, water at 75°C, 2% lactic acid at 55°C, or 2% acetic acid at 55°C. The beef slices were vacuum packaged and stored at 4 or 10°C and were analyzed after 0, 7, 14, 21, and 28 days of storage. Dipping in 75°C water, lactic acid, and acetic acid resulted in immediate pathogen reductions of 1.4 to 2.0, 1.8 to 2.6, and 1.4 to 2.4 log CFU/cm2, respectively. After storage at 10°C for 28 days, populations of L. monocytogenes on meat treated with 55°C water increased by ca. 1.6 to 1.8 log CFU/cm2. The pathogen remained at low population levels (1.6 to 2.8 log CFU/cm2) on acid-treated meat, whereas populations on meat treated with 75°C water increased rapidly, reaching levels of 3.6 to 4.6 log CFU/cm2 by day 14. During storage at 4°C, there was no growth of the pathogen for at least 21 days in samples treated with 55 and 75°C water, and periods of no growth were longer for acid-treated samples. There were no differences between acid-adapted and nonadapted organisms across treatments with respect to survival or growth. In conclusion, the dipping of meat inoculated with L. monocytogenes into acid solutions reduced and then inhibited the growth of the pathogen during storage at 4 and 10°C, while dipping in hot water allowed growth despite initial reductions in pathogen contamination. The results of this study indicate a residual activity of acid-based decontamination treatments compared with water-based treatments for refrigerated (4°C) or temperature-abused (10°C) lean beef tissue in vacuum packages, and these results also indicate that this activity may not be counteracted by prior acid adaptation of L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document