Population Dynamics of the Constitutive Biota of French Dry Sausages in a Pilot-Scale Ripening Chamber†

2004 ◽  
Vol 67 (10) ◽  
pp. 2306-2309 ◽  
Author(s):  
RAQUEL HUERTA ◽  
R. JORDANO ◽  
L. M. MEDINA ◽  
CARMEN LÓPEZ

The population dynamic of constitutive biota on 84 samples belonging to two different types of French fermented dry sausages during the ripening process in a pilot-scale ripening chamber was investigated. Samples were analyzed in three steps of their production: fresh product, first drying stage, and finished product. In addition, 180 strains of lactic acid bacteria were identified using a miniaturized biochemical procedure of characterization. In general, the number of lactic acid bacteria that evolved during the ripening process of French dry sausages increased during the first days of the process after which the number of these organisms remained constant at approximately 8 log CFU/g. Lactobacillus sakei and Pediococcus pentosaceus, bacteria added as starter, were the dominant species. Pediococcus urinaeequi, Pediococcus acidilactici, and particularly Lactobacillus curvatus were also present. Finally, we have to take into account that the controlled conditions of the pilot plant generally contribute to the homogenization of the behavior of the starter biota.

2022 ◽  
Author(s):  
Nikiforova AP ◽  
Khazagaeva SN ◽  
Khamagaeva IS

Two strains of lactic acid bacteria were selected for the study (Lactobacillus sakei Lsk-45andLactobacillus sakeiDSM 20017). Bacterial media, based on rice and rice flour, were tested as an alternative to media based on whey. A comparison of the different types of media showed that there was better growth of the selected strains on themedium based on rice flour.Statistical analyses, including factorial experiments and response surface analyses, were used to optimizethe composition of the bacterial medium for Lactobacillus sakei propagation. Bacteriological peptone and rice flour were found to be good growth factors for Lactobacillus sakei.For Lactobacillus sakei Lsk-45,better growth was obtained with the use of 7.75-10 g/L of peptone and 57.5-75 g/L of rice flour. For Lactobacillus sakei DSM 20017, better growth was obtained with the use of 7-10 g/L of peptone and 40-75 g/L of rice flour. Keywords: starters, media, Lactobacillus sakei, fermentation,fish products, bacterial strains, lactic acid bacteria


2007 ◽  
Vol 23 (5-6-1) ◽  
pp. 283-290
Author(s):  
L. Andersen ◽  
S. Cislaghi

In the production of fermented, dry sausages (salami) it is important to oppress the acidification to ensure a safe and controlled processing. The acidification may be achieved by applying a starter culture containing lactic acid bacteria (LAB), chemically by e.g. glucono-deltalacton (GdL, E 575) or relying on the indigenous LAB flora. In salami meat model the acidification and LAB development with GdL in two levels, 0.4% and 0.8%, with and without starter culture were compared. The starter culture was Lyocarni RBL-73 with Lactobacillus curvatus as the acidifier. In parallel a control without any acidifier added was followed. An initial pH decline to pH below 5.3 at 25?C was obtained with both GdL applications. In comparison it took approx. 17 hours for the starter culture to achieve the same pH. Furthermore it was demonstrated that GdL did not control the indigenous flora which the starter culture was capable of. Consequently, if the application of GdL is required it is recommendable to combine low amounts of GdL with a starter culture to control the processing.


2015 ◽  
Vol 9 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Elena Bartkiene ◽  
Erika Skabeikyte ◽  
Vita Krungleviciute ◽  
Ida Jakobsone ◽  
Natalija Bobere ◽  
...  

The aim of this study was to evaluate the influence of solid state fermentation (SSF) and submerged fermentation (SmF) with bacteriocin-like inhibitory substances (BLIS) producing lactic acid bacteria (LAB) (Pediococcus acidilactici, Lactobacillus sakei and Pediococcus pentosaceus) on the content of alkylresorcinols (ARs) and lignans in plant products (barley bran, pea fiber, and lupine seeds). Lignans analysis was performed by HPLC-MS/MS, and alkylresorcinols content was evaluated by GC/MS. We found that with the experimentally tested LAB, under SSF conditions more organic acids were produced and in most cases a higher count of the LAB was found in SSF samples, compared to the SmF samples. The matairesinol content was increased by using fermentation (from 7.9 to 35.4 % in pea fiber, from 33.2 to 81.5 % in lupine seeds, and from 5.9 to 74.9 % in barley bran), and in most cases a higher content of matairesinol was found in the SSF samples. The content of secoisolariciresinol in the fermented samples was found to be higher, in comparison to the untreated samples. It was found that the total lignans content in the pea fiber had a strong correlation with the amylase activity (R=0.7908; P=0.0177). Our results suggested that the total ARs content in pea fiber, lupine seeds, and barley bran was 267 µg/g; 1757 µg/g, and 1488 µg/g, respectively, and by using the LAB fermentation, the ARs content was reduced by 40 to 73 %, by 10 to 77 %, and by 24 to 74 %, respectively. We conclude that by using the LAB fermentation, the concentration of lignans in plant products could be increased, but the ARs content could be reduced, and the proper conditions should be selected for the fermentation, in order to prevent possible losses of these biologically active compounds.


1999 ◽  
Vol 62 (12) ◽  
pp. 1416-1429 ◽  
Author(s):  
J. MIGUEL ROCHA ◽  
F. XAVIER MALCATA

Traditional manufacture of bread from maize has been noted to play important roles from both economic and social standpoints; however, enforcement of increasingly strict hygiene standards requires thorough knowledge of the adventitious microbiota of the departing dough. To this goal, sourdough as well as maize and rye flours from several geographic locations and in two different periods within the agricultural year were assayed for their microbiota in sequential steps of quantification and identification. More than 400 strains were isolated and taxonomic differentiation between them was via Biomerieux API galleries (375 of which were successfully identified) following preliminary biochemical and morphological screening. The dominant groups were yeasts and lactic acid bacteria (LAB). The most frequently isolated yeasts were Saccharomyces cerevisiae and Candida pelliculosa. The most frequently isolated LAB were (heterofermentative) Leuconostoc spp. and (homo-fermentative) Lactobacillus spp.; L. brevis, L. curvatus, and L. lactis ssp. lactis were the dominant species for the Lactobacillus genera; Lactococcus lactis ssp. lactis for lactococci; Enterococcus casseliflavus, E. durans, and E. faecium for enterococci; and Streptococcus constellantus and S. equinus for streptococci.


Author(s):  
Kang Wook Lee ◽  
Jae Min Shim ◽  
Dong Wook Kim ◽  
Zhuang Yao ◽  
Jeong A. Kim ◽  
...  

1999 ◽  
Vol 62 (7) ◽  
pp. 773-777 ◽  
Author(s):  
GIANLUIGI MAURIELLO ◽  
MARIA APONTE ◽  
ROSAMARIA ANDOLFI ◽  
GIANCARLO MOSCHETTI ◽  
FRANCESCO VILLANI

Cell survival, cellular damage, and antagonistic activity were investigated after spray-drying of four bacteriocin-producing strains of lactic acid bacteria: Lactococcus lactis subsp. lactis 140, isolated from natural whey culture and producing a narrow-inhibitory spectrum bacteriocin); L. lactis subsp. lactis G35, isolated from pizza dough and producing nisin; Lactobacillus curvatus 32Y and Lactobacillus sp. 8Z, isolated from dry sausages. Trials were performed with bacteria suspended in skimmed milk or directly grown in whey. Three air temperatures at the inlet of the drier (160, 180, and 200°C) and three flow rates (10, 13, and 17 ml/min) were assayed. Cell viability and bacteriocin activity of the dried materials were determined immediately after the process and after 5, 15, 30, and 60 days of storage at 4°C. There was no significant difference between the two feeding suspensions in cell survival, always decreasing with the increase of inlet-air temperature. No loss of bacteriocin activity was detected in reconstituted powders, nor was any loss of ability to produce bacteriocin found after drying. Investigations of sensitivity to NaCl revealed only temporary damage to dried bacteria. During storage for 2 months at 4°C, all samples, but mainly the lactococcal strains, displayed a gradual decrease in cell survival. Bacteriocin activity remained at the same level, allowing powders to be considered as effective biopreservatives.


2020 ◽  
Vol 8 (2) ◽  
pp. 301
Author(s):  
Fernando Sánchez-Juanes ◽  
Vanessa Teixeira-Martín ◽  
José Manuel González-Buitrago ◽  
Encarna Velázquez ◽  
José David Flores-Félix

Several artisanal cheeses are elaborated in European countries, being commonly curdled with rennets of animal origin. However, in some Spanish regions some cheeses of type “Torta” are elaborated using Cynara cardunculus L. rennets. Two of these cheeses, “Torta del Casar” and “Torta de Trujillo”, are elaborated in Cáceres province with ewe’s raw milk and matured over at least 60 days without starters. In this work, we identified the lactic acid bacteria present in these cheeses using MALDI-TOF MS and pheS gene analyses, which showed they belong to the species Lactobacillus curvatus, Lactobacillus diolivorans, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis and Leuconostoc mesenteroides. The pheS gene analysis also allowed the identification of the subspecies La. plantarum subsp. plantarum, La. paracasei subsp. paracasei and Le. mesenteroides subsp. jonggajibkimchii. Low similarity values were found in this gene for some currently accepted subspecies of Lc. lactis and for the two subspecies of La. plantarum, and values near to 100% for the subspecies of Le. mesenteroides and La. paracasei. These results, which were confirmed by the calculated ANIb and dDDH values of their whole genomes, showed the need to revise the taxonomic status of these species and their subspecies.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Federica Giacometti ◽  
Paolo Daminelli ◽  
Laura Fiorentini ◽  
Elena Cosciani-Cunico ◽  
Paola Monastero ◽  
...  

Formaggio di Fossa di Sogliano is a traditional Italian Protected Designation of Origin (PDO) cheese ripened for a minimum of 5 months, with the feature of a ripening of at least 80 to at most 100 days in pits, digged into tuffaceous rocks according to medieval tradition of Italy. In this study, a challenge test using Listeria innocua as a surrogate of Listeria monocytogenes was performed, with the aim of increasing knowledge concerning the impact of the Fossa cheese process, and especially of the traditional ripening process of this PDO, on the behaviour of L. monocytogenes. Pasteurized milk was experimentally inoculated with 4.5 log CFU/mL cocktail by three L. innocua strains, and L. innocua and Mesophilic Lactic Acid Bacteria (LAB) counts as well as the evolution of temperatures, pH and aw values were monitored throughout the manufacturing and ripening processes. Throughout the ripening in maturation room a constant temperature of 8°C was observed reaching a temperature between 10 and 15.5°C during ripening into pit. In the final products data for LAB concentration, pH and aw values were roughly in accordance with literature, even if some differences were, probably due to variability of artisanal cheese productions. The numbers of L. innocua showed a slight decrease but remained stable until the end of ripening in maturation room, whereas a significant reduction of the microorganism was observed in the final product, at the end of the ripening into the pit. The findings give scientific evidence that the process of this PDO prevented the L. innocua growth, allowing us to speculate a similar behaviour of L. monocytogenes. Based on this study, the recommendation to extend as much as possible the ripening into pit (from 80 to 100 days) was provided to food business operators as a risk mitigation strategy to be implemented.


2018 ◽  
Vol 9 ◽  
Author(s):  
Marcia Leyva Salas ◽  
Anne Thierry ◽  
Mathilde Lemaître ◽  
Gilles Garric ◽  
Marielle Harel-Oger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document