Biogenic Amines in Natural Ciders

2006 ◽  
Vol 69 (12) ◽  
pp. 3006-3012 ◽  
Author(s):  
G. GARAI ◽  
M. T. DUEÑAS ◽  
A. IRASTORZA ◽  
P. J. MARTÍN-ÁLVAREZ ◽  
M. V. MORENO-ARRIBAS

Biogenic amines play an important physiological role in mammals, and high amounts of some exogenous amines in human diet may contribute to a wide variety of toxic effects. These amines are commonly found in many foodstuffs, particularly in fermented products such as cheese, meat products, beer, wine, and ciders. Here, the level of biogenic amines in some natural ciders was examined. Twenty-four samples of cider purchased from commercial sources were analyzed by reverse-phase high-performance liquid chromatography and fluorescence detection after precolumn derivatization with o-phthaldialdehyde. Amine levels were variable, ranging from not detected to 23 mg/liter. The average level of total biogenic amines in ciders was 5.94 ± 8.42 mg/liter. Putrescine, histamine, and tyramine were the prevailing amines being present in 50.0, 37.5, and 33.3% of the ciders studied; very small amounts of ethylamine and phenylethylamine were observed in only one sample. Other cider parameters were analyzed to determine whether they affect the biogenic amine content in ciders, and the results were evaluated by applying cluster analysis and principal component analysis. Ciders that showed lower glycerol contents and higher amounts of 1,3-propanediol had much higher levels of histamine, tyramine, and putrescine, suggesting a high activity of lactic acid bacteria during cider making and thus the need for effective control of lactic acid bacteria.

2006 ◽  
Vol 69 (2) ◽  
pp. 391-396 ◽  
Author(s):  
ANTONELLA COSTANTINI ◽  
MANUELA CERSOSIMO ◽  
VINCENZO DEL PRETE ◽  
EMILIA GARCIA-MORUNO

Biogenic amines are frequently found in wine and other fermented food. We investigated the ability of 133 strains of lactic acid bacteria isolated from musts and wines of different origins to produce histamine, tyramine, and putrescine. We detected the genes responsible for encoding the corresponding amino acid decarboxylases through PCR assays using two primer sets for every gene: histidine decarboxylase (hdc), tyrosine decarboxylase (tdc), and ornithine decarboxylase (odc); these primers were taken from the literature or designed by us. Only one strain of Lactobacillus hilgardii was shown to possess the hdc gene, whereas four strains of Lactobacillus brevis had the tdc gene. None of the Oenococcus oeni strains, the main agents of malolactic fermentation, was a biogenic amine producer. All PCR amplicon band–positive results were confirmed by thin-layer chromatography and high-performance liquid chromatography analyses.


2015 ◽  
Vol 4 (3) ◽  
Author(s):  
Luiz Felipe Lopes Dos Santos ◽  
Eliane Teixeira Mársico ◽  
César Aquiles Lázaro ◽  
Rose Teixeira ◽  
Laís Doro ◽  
...  

The objective of the present study was to evaluate the levels of biogenic amines (cadaverine, putrescine, tyramine, histamine, spermidine and spermine) by high performance liquid chromatography (HPLC) and the physicochemical (moisture, lipids, proteins, pH, water activity and fixed mineral residue) and microbiological (lactic acid bacteria and aerobic heterotrophic mesophilic bacteria count) characteristics of six Italian-type salami brands sold in the city of Niteroi (Rio de Janeiro, Brazil). The salami showed lactic acid bacteria count from 5.7 to 8.6 CFU•mL<sup>-1</sup>, and heterotrophic mesophilic bacteria count from 5.8 to 8.7 CFU•mL<sup>-1</sup>. Three brands showed moisture contents above 35% and one brand had protein content below 25%. The mean values obtained for the amines were: 197.43, 143.29, 73.02, 4.52, 90.66 and 36.17 mg•kg<sup>-1</sup> for tyramine, putrescine, cadaverine, spermidine, histamine, and spermine respectively. Two brands presented histamine contents above the legal limit established in 100 mg•kg<sup>-1</sup>. We concluded that the evaluated salami presented a wide variation in the count of the bacterial groups whit a predominance of lactic acid bacteria. The moisture contents indicate insufficient drying before commercialization and protein content had values below the minimum limit determined by the Brazilian legislation. Finally, the levels of biogenic amines found could cause adverse reactions in susceptible consumers, depending of the amount and frequency of intake of these products.


Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 73 ◽  
Author(s):  
Young Hun Jin ◽  
Jae Hoan Lee ◽  
Young Kyung Park ◽  
Jun-Hee Lee ◽  
Jae-Hyung Mah

In this study, biogenic amine content in two types of fermented radish kimchi (Kkakdugi and Chonggak kimchi) was determined by high performance liquid chromatography (HPLC). While most samples had low levels of biogenic amines, some samples contained histamine content over the toxicity limit. Additionally, significant amounts of total biogenic amines were detected in certain samples due to high levels of putrefactive amines. As one of the significant factors influencing biogenic amine content in both radish kimchi, Myeolchi-aekjoet appeared to be important source of histamine. Besides, tyramine-producing strains of lactic acid bacteria existed in both radish kimchi. Through 16s rRNA sequencing analysis, the dominant species of tyramine-producing strains was identified as Lactobacillus brevis, which suggests that the species is responsible for tyramine formation in both radish kimchi. During fermentation, a higher tyramine accumulation was observed in both radish kimchi when L. brevis strains were used as inocula. The addition of Myeolchi-aekjeot affected the initial concentrations of histamine and cadaverine in both radish kimchi. Therefore, this study suggests that reducing the ratio of Myeolchi-aekjeot to other ingredients (and/or using Myeolchi-aekjeot with low biogenic amine content) and using starter cultures with ability to degrade and/or inability to produce biogenic amines would be effective in reducing biogenic amine content in Kkakdugi and Chonggak kimchi.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1435
Author(s):  
Hee Seo ◽  
Jae-Han Bae ◽  
Gayun Kim ◽  
Seul-Ah Kim ◽  
Byung Hee Ryu ◽  
...  

The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. This study aimed to evaluate the suitability of probiotic lactic acid bacteria (LAB) as a starter for kimchi fermentation. Seventeen probiotic type strains were tested for their growth rates, volatile aroma compounds, metabolites, and sensory characteristics of kimchi, and their characteristics were compared to those of Leuconostoc (Le.) mesenteroides DRC 1506, a commercial kimchi starter. Among the tested strains, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Ligilactobacillus salivarius exhibited high or moderate growth rates in simulated kimchi juice (SKJ) at 37 °C and 15 °C. When these five strains were inoculated in kimchi and metabolite profiles were analyzed during fermentation using GC/MS and 1H-NMR, data from the principal component analysis (PCA) showed that L. fermentum and L. reuteri were highly correlated with Le. mesenteroides in concentrations of sugar, mannitol, lactate, acetate, and total volatile compounds. Sensory test results also indicated that these three strains showed similar sensory preferences. In conclusion, L. fermentum and L. reuteri can be considered potential candidates as probiotic starters or cocultures to develop health-promoting kimchi products.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Wang ◽  
Ran Tian ◽  
Buwei Liu ◽  
Hongcai Wang ◽  
Jun Liu ◽  
...  

AbstractSugarcane molasses are considered a potential source for bioethanol’s commercial production because of its availability and low market price. It contains high concentrations of fermentable sugars that can be directly metabolized by microbial fermentation. Heterofermentative lactic acid bacteria, especially Lactiplantibacillus casei, have a high potential to be a biocatalyst in ethanol production that they are characterized by strong abilities of carbohydrate metabolism, ethanol synthesis, and high alcohol tolerance. This study aimed to evaluate the feasibility of producing ethanol by Lactiplantibacillus casei used the ethanologen engineering strain L. casei E1 as a starter culture and cane molasses as substrate medium. The effects of environmental factors on the metabolism of L. casei E1 were analyzed by high-performance liquid chromatography (HPLC) system, and the gene expression of key enzymes in carbon source metabolism was detected using quantitative real-time PCR (RT–qPCR). Results showed that the strain could grow well, ferment sugar quickly in cane molasses. By fermenting this bacterium anaerobically at 37 °C for 36 h incubation in 5 °BX molasses when the fermenter’s pH was controlled at 6.0, ethanol yield reached 13.77 g/L, and carbohydrate utilization percentage was 78.60%. RT-qPCR results verified the strain preferentially ferment glucose and fructose of molasses to ethanol at the molecular level. In addition, the metabolism of sugars, especially fructose, would be inhibited by elevating acidity. Our findings support the theoretical basis for exploring Lactic acid bacteria as a starter culture for converting sugarcane molasses into ethanol.


2007 ◽  
Vol 70 (9) ◽  
pp. 2155-2160 ◽  
Author(s):  
VINCENZO DEL PRETE ◽  
HECTOR RODRIGUEZ ◽  
ALFONSO V. CARRASCOSA ◽  
BLANCA de las RIVAS ◽  
EMILIA GARCIA-MORUNO ◽  
...  

A study was carried out to determine the in vitro interaction between ochratoxin A (OTA) and wine lactic acid bacteria (LAB). Fifteen strains belonging to five relevant oenological LAB species were grown in liquid synthetic culture medium containing OTA. The portion of OTA removed during the bacterial growth was 8 to 28%. The OTA removed from the supernatants was partially recovered (31 to 57%) from the bacterial pellet. Cell-free extracts of three representative strains were produced by disrupting cells in a French pressure cell. The ability of crude cell-free extracts to degrade OTA was studied. OTA was not degraded by cell-free extracts of wine LAB strains, and no degradation products of OTA were detected in the high-performance liquid chromatograms of the methanol extract of the bacterial pellet. On the basis of these results, we conclude that OTA removal by wine LAB is a cell-binding phenomenon. The chemistry and the molecular basis of OTA binding to wine LAB remains unknown.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Dominika Jurášková ◽  
Susana C. Ribeiro ◽  
Celia C. G. Silva

The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.


Author(s):  
Olga Cwiková ◽  
Vlastimil Dohnal ◽  
Tomáš Komprda

Counts of lactic acid bacteria (LAB), total anaerobes and enterococci were determined in the course of ripening in the edge part (E) and the core part (C) of Dutch-type semi-hard cheese produced with different fat content (30 and 45 %) by two different producers (H and R) using two different starter cultures (L and Y). Counts of LAB at the beginning of ripening (day 0) in H producer´s samples were higher (P < 0,01) in comparison with the R producer´s ones. Count of enterococci was the highest (P < 0,05) at the end of the ripening (176th day) in sample R30YE. Higher (P < 0,01) enterococci counts were in R producer´s cheeses (in comparison with the H producer´s ones). Enterococci contamination was higher (P < 0,05) in E-samples than C-samples. Content of the sum of all BA in cheese was negatively correlated (P < 0,05) with counts of lactic acid bacteria (r = –0,24) and counts of total anaerobes (r = –0,23). No correlation between the sum of BA content and enterococci counts was found.


Sign in / Sign up

Export Citation Format

Share Document