Review of Antimicrobial and Antioxidative Activities of Chitosans in Food

2010 ◽  
Vol 73 (9) ◽  
pp. 1737-1761 ◽  
Author(s):  
MENDEL FRIEDMAN ◽  
VIJAY K. JUNEJA

Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.

Author(s):  
Virginia Fuochi ◽  
Rosalia Emma ◽  
Pio Maria Furneri

: Nowadays, consumers have become increasingly attentive to human health and the use of more natural products. Consequently, the demand for natural preservatives in the food industry is more frequent. This has led to an intense research to discover new antimicrobial compounds of natural origin which could effectively fight foodborne pathogens. This research aims to safeguard the health of consumers and, above all, to avoid potentially harmful chemical compounds. Lactobacillus is a bacterial genus belonging to the Lactic Acid Bacteria and many strains are defined GRAS, generally recognized as safe. These strains are able to produce substances with antibacterial activity against food spoilage bacteria and contaminating pathogens: the bacteriocins. The aim of this review was to focus on this genus and their capability to produce antibacterial peptides. The review collected all the information of the last few years about bacteriocins produced by Lactobacillus strains, isolated from clinical or food samples, with remarkable antimicrobial activities useful for being exploited in the food field. In addition, the advantages and disadvantages of their use, and the possible ways of improvement for industrial application were described.


Author(s):  
A. Bolivar ◽  
J.C.C.P. Costa ◽  
G.D. Posada-Izquierdo ◽  
F. Pérez-Rodríguez ◽  
I. Bascón ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 490 ◽  
Author(s):  
Jun Mei ◽  
Xuan Ma ◽  
Jing Xie

Fish is extremely perishable as a result of rapid microbial growth naturally present in fish or from contamination. Synthetic preservatives are widely used in fish storage to extend shelf life and maintain quality and safety. However, consumer preferences for natural preservatives and concerns about the safety of synthetic preservatives have prompted the food industry to search natural preservatives. Natural preservatives from microorganisms, plants, and animals have been shown potential in replacing the chemical antimicrobials. Bacteriocins and organic acids from bacteria showed good antimicrobial activities against spoilage bacteria. Plant-derived antimicrobials could prolong fish shelf life and decrease lipid oxidation. Animal-derived antimicrobials also have good antimicrobial activities; however, their allergen risk should be paid attention. Moreover, some algae and mushroom species can also provide a potential source of new natural preservatives. Obviously, the natural preservatives could perform better in fish storage by combining with other hurdles such as non-thermal sterilization processing, modified atmosphere packaging, edible films and coatings.


2019 ◽  
Author(s):  
Pratikshya Ray ◽  
Uday Pandey ◽  
Palok Aich

AbstractAimsVancomycin, an antibiotic, is used to treat infection of multi-drug resistant strains of Clostridium difficile and Staphylococcus. Post-usage effects of vancomycin may lead to many unwanted effects including perturbation of gut microbiota. Perturbation of the gut microbiota, by Vancomycin, was used to understand the altered metabolic and innate immune profile of C57BL/6(Th1-biased) and BALB/c (Th2-biased) mice.Methods and ResultsFollowing treatment with vancomycin till day 4, we observed reduction in abundance of phyla Firmicutes and Bacteroides and increase in Proteobacteria in the gut for both strains of mice. Results further revealed a significant increase in the phylum Verrucomicrobia, from day 5 onwards following treatment with vancomycin led to decreased inflammation and increased rate of glucose tolerance in the host.ConclusionsContinued dosage of vancomycin was more beneficial in C57BL/6 than BALB/c miceSignificance and Impact of the studyThe current study established that initial doses of vancomycin increased pathogenic bacteria but the continued doses of vancomycin provided significant health-related benefits to the host by decreasing pathogenic load and by increasing beneficial microbes of Verrucomicrobia phylum (A. muciniphila) more in C57BL/6 (Th-1) than BALB/c (Th-2) mice.


2020 ◽  
Vol 16 (5) ◽  
pp. 675-688
Author(s):  
Shamsi Abbasalizadeh ◽  
Behzad Ebrahimi ◽  
Aslan Azizi ◽  
Rogaye Dargahi ◽  
Maryam Tayebali ◽  
...  

Constipation is a common public health concern experienced by all individuals during their life affecting the quality of life. In this paper, we aimed to provide an overview of the existing evidence regarding the role of food ingredients, including bran, prune, fig, kiwifruit, and flax-seed in constipation treatment. We searched Scopus, Pub Med, and Science Direct by using the keywords, “laxative foods” and “constipation”, for searching studies assessing laxative food ingredients and their beneficial effects on constipation treatment and/or control. Lifestyle modifications such as increasing dietary fiber and fluid intake and daily exercise are the proposed first line treatments for constipation. Optimizing ‘diet’ as an efficient lifestyle factor may contribute to the well-being of patients. The use of laxative food ingredients including bran, prune, fig, kiwifruit, flax-seed, probiotics, and prebiotics is a convenient alternative to cope with constipation. According to previous findings, laxative food ingredients could be considered as effective treatments for subjects suffering from constipation. Many studies have assessed the pharmacological and non-pharmacological roles of these ingredients in treating constipation, however, their importance has not been thoroughly investigated.


2020 ◽  
Vol 16 (6) ◽  
pp. 846-853
Author(s):  
Raghunandan Purohith ◽  
Nagendra P.M. Nagalingaswamy ◽  
Nanjunda S. Shivananju

Metabolic syndrome is a collective term that denotes disorder in metabolism, symptoms of which include hyperglycemia, hyperlipidemia, hypertension, and endothelial dysfunction. Diet is a major predisposing factor in the development of metabolic syndrome, and dietary intervention is necessary for both prevention and management. The bioactive constituents of food play a key role in this process. Micronutrients such as vitamins, carotenoids, amino acids, flavonoids, minerals, and aromatic pigment molecules found in fruits, vegetables, spices, and condiments are known to have beneficial effects in preventing and managing metabolic syndrome. There exists a well-established relationship between oxidative stress and major pathological conditions such as inflammation, metabolic syndrome, and cancer. Consequently, dietary antioxidants are implicated in the remediation of these complications. The mechanism of action and targets of dietary antioxidants as well as their effects on related pathways are being extensively studied and elucidated in recent times. This review attempts a comprehensive study of the role of dietary carotenoids in alleviating metabolic syndromewith an emphasis on molecular mechanism-in the light of recent advances.


2019 ◽  
Vol 18 (3) ◽  
pp. 232-238 ◽  
Author(s):  
Emanuela Onesti ◽  
Vittorio Frasca ◽  
Marco Ceccanti ◽  
Giorgio Tartaglia ◽  
Maria Cristina Gori ◽  
...  

Background: The cannabinoid system may be involved in the humoral mechanisms at the neuromuscular junction. Ultramicronized-palmitoylethanolamide (μm-PEA) has recently been shown to reduce the desensitization of Acetylcholine (ACh)-evoked currents in denervated patients modifying the stability of ACh receptor (AChR) function. <p> Objective: To analyze the possible beneficial effects of μm-PEA in patients with myasthenia gravis (MG) on muscular fatigue and neurophysiological changes. <p> Method: The duration of this open pilot study, which included an intra-individual control, was three weeks. Each patient was assigned to a 1-week treatment period with μm-PEA 600 mg twice a day. A neurophysiological examination based on repetitive nerve stimulation (RNS) of the masseteric and the axillary nerves was performed, and the quantitative MG (QMG) score was calculated in 22 MG patients every week in a three-week follow-up period. AChR antibody titer was investigated to analyze a possible immunomodulatory effect of PEA in MG patients. <p> Results: PEA had a significant effect on the QMG score (p=0.03418) and on RNS of the masseteric nerve (p=0.01763), thus indicating that PEA reduces the level of disability and decremental muscle response. Antibody titers did not change significantly after treatment. <p> Conclusion: According to our observations, μm-PEA as an add-on therapy could improve muscular response to fatigue in MG. The possible modulation of AChR currents as a means of eliciting a direct effect from PEA on the conformation of ACh receptors should be investigated. The co-role of cytokines also warrants an analysis. Given the rapidity and reversibility of the response, we suppose that PEA acts directly on AChR, though further studies are needed to confirm this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document