Annual Cost of Illness and Quality-Adjusted Life Year Losses in the United States Due to 14 Foodborne Pathogens†

2012 ◽  
Vol 75 (7) ◽  
pp. 1292-1302 ◽  
Author(s):  
SANDRA HOFFMANN ◽  
MICHAEL B. BATZ ◽  
J. GLENN MORRIS

In this article we estimate the annual cost of illness and quality-adjusted life year (QALY) loss in the United States caused by 14 of the 31 major foodborne pathogens reported on by Scallan et al. (Emerg. Infect. Dis. 17:7–15, 2011), based on their incidence estimates of foodborne illness in the United States. These 14 pathogens account for 95% of illnesses and hospitalizations and 98% of deaths due to identifiable pathogens estimated by Scallan et al. We estimate that these 14 pathogens cause $14.0 billion (ranging from $4.4 billion to $33.0 billion) in cost of illness and a loss of 61,000 QALYs (ranging from 19,000 to 145,000 QALYs) per year. Roughly 90% of this loss is caused by five pathogens: nontyphoidal Salmonella enterica ($3.3 billion; 17,000 QALYs), Campylobacter spp. ($1.7 billion; 13,300 QALYs), Listeria monocytogenes ($2.6 billion; 9,400 QALYs), Toxoplasma gondii ($3 billion; 11,000 QALYs), and norovirus ($2 billion; 5,000 QALYs). A companion article attributes losses estimated in this study to the consumption of specific categories of foods. To arrive at these estimates, for each pathogen we create disease outcome trees that characterize the symptoms, severities, durations, outcomes, and likelihoods of health states associated with that pathogen. We then estimate the cost of illness (medical costs, productivity loss, and valuation of premature mortality) for each pathogen. We also estimate QALY loss for each health state associated with a given pathogen, using the EuroQol 5D scale. Construction of disease outcome trees, outcome-specific cost of illness, and EuroQol 5D scoring are described in greater detail in a second companion article.

2019 ◽  
Vol 48 (1) ◽  
pp. 242-251 ◽  
Author(s):  
Joshua S. Everhart ◽  
Andrew B. Campbell ◽  
Moneer M. Abouljoud ◽  
J. Caid Kirven ◽  
David C. Flanigan

Background: Multiple knee cartilage defect treatments are available in the United States, although the cost-efficacy of these therapies in various clinical scenarios is not well understood. Purpose/Hypothesis: The purpose was to determine cost-efficacy of cartilage therapies in the United States with available mid- or long-term outcomes data. The authors hypothesized that cartilage treatment strategies currently approved for commercial use in the United States will be cost-effective, as defined by a cost <$50,000 per quality-adjusted life-year over 10 years. Study Design: Systematic review. Methods: A systematic search was performed for prospective cartilage treatment outcome studies of therapies commercially available in the United States with minimum 5-year follow-up and report of pre- and posttreatment International Knee Documentation Committee subjective scores. Cost-efficacy over 10 years was determined with Markov modeling and consideration of early reoperation or revision surgery for treatment failure. Results: Twenty-two studies were included, with available outcomes data on microfracture, osteochondral autograft, osteochondral allograft (OCA), autologous chondrocyte implantation (ACI), and matrix-induced ACI. Mean improvement in International Knee Documentation Committee subjective scores at final follow-up ranged from 17.7 for microfracture of defects >3 cm2 to 36.0 for OCA of bipolar lesions. Failure rates ranged from <5% for osteochondral autograft for defects requiring 1 or 2 plugs to 46% for OCA of bipolar defects. All treatments were cost-effective over 10 years in the baseline model if costs were increased 50% or if failure rates were increased an additional 15%. However, if efficacy was decreased by a minimum clinically important amount, then ACI (periosteal cover) of femoral condylar lesions ($51,379 per quality-adjusted life-year), OCA of bipolar lesions ($66,255) or the patella ($66,975), and microfracture of defects >3 cm2 ($127,782) became cost-ineffective over 10 years. Conclusion: Currently employed treatments for knee cartilage defects in the United States are cost-effective in most clinically acceptable applications. Microfracture is not a cost-effective initial treatment of defects >3 cm2. OCA transplantation of the patella or bipolar lesions is potentially cost-ineffective and should be used judiciously.


2009 ◽  
Vol 99 (12) ◽  
pp. 1387-1393 ◽  
Author(s):  
M. Hodda ◽  
D. C. Cook

Potato cyst nematodes (PCN) (Globodera spp.) are quarantine pests with serious potential economic consequences. Recent new detections in Australia, Canada, and the United States have focussed attention on the consequences of spread and economic justifications for alternative responses. Here, a full assessment of the economic impact of PCN spread from a small initial incursion is presented. Models linking spread, population growth, and economic impact are combined to estimate costs of spread without restriction in Australia. Because the characteristics of the Australian PCN populations are currently unknown, the known ranges of parameters were used to obtain cost scenarios, an approach which makes the model predictions applicable generally. Our analysis indicates that mean annual costs associated with spread of PCN would increase rapidly initially, associated with increased testing. Costs would then increase more slowly to peak at over AUD$20 million per year ≈10 years into the future. Afterward, this annual cost would decrease slightly due to discounting factors. Mean annual costs over 20 years were $18.7 million, with a 90% confidence interval between AUD$11.9 million and AUD$27.0 million. Thus, cumulative losses to Australian agriculture over 20 years may exceed $370 million without action to prevent spread of PCN and entry to new areas.


2012 ◽  
Vol 75 (2) ◽  
pp. 341-346 ◽  
Author(s):  
ETHEL V. TAYLOR ◽  
KRISTIN G. HOLT ◽  
BARBARA E. MAHON ◽  
TRACY AYERS ◽  
DAWN NORTON ◽  
...  

Infection resulting from foodborne pathogens, including Escherichia coli O157:H7, is often associated with consumption of raw or undercooked ground beef. However, little is known about the frequency of ground beef consumption in the general population. The objective of this study was to describe patterns of self-reported ground beef and pink ground beef consumption using data from the 2006 through 2007 FoodNet Population Survey. From 1 July 2006 until 30 June 2007, residents of 10 FoodNet sites were contacted by telephone and asked about foods consumed within the previous week. The survey included questions regarding consumption of ground beef patties both inside and outside the home, the consumption of pink ground beef patties and other types of ground beef inside the home, and consumption of ground beef outside the home. Of 8,543 survey respondents, 75.3% reported consuming some type of ground beef in the home. Of respondents who ate ground beef patties in the home, 18.0% reported consuming pink ground beef. Consumption of ground beef was reported most frequently among men, persons with incomes from $40,000 to $75,000 per year, and persons with a high school or college education. Ground beef consumption was least often reported in adults ≥65 years of age. Men and persons with a graduate level education most commonly reported eating pink ground beef in the home. Reported consumption of ground beef and pink ground beef did not differ by season. Ground beef is a frequently consumed food item in the United States, and rates of consumption of pink ground beef have changed little since previous studies. The high rate of consumption of beef that has not been cooked sufficiently to kill pathogens makes pasteurization of ground beef an important consideration, especially for those individuals at high risk of complications from foodborne illnesses such as hemolytic uremic syndrome.


2019 ◽  
Vol 10 (1) ◽  
pp. 409-427 ◽  
Author(s):  
Joshua B. Gurtler ◽  
Susanne E. Keller

Spices in the desiccated state provide an environment that allows the survival of many foodborne pathogens. Currently, the incidence of pathogen-positive spices imported into the United States is 1.9 times higher than for any other imported food. Correspondingly, imported spices have been associated with numerous foodborne outbreaks and multiple product recalls. Despite the association with recalls and outbreaks, the actual pathogen populations in spices, when found, are frequently extremely small. In addition to pathogenic bacterial species, toxigenic molds have been frequently recovered from spices, and aflatoxins have been found in as many as 58% of the spices sampled. The presence of toxigenic molds is especially problematic to the immunocompromised or those on immunosuppressive therapy and has been linked to gut aspergillosis. Numerous detection methods, including both traditional and advanced DNA regimes, are being tested to optimize recovery of pathogens from spices. Further, a number of new inactivation intervention methods to decontaminate spices are examined and discussed.


2012 ◽  
Vol 22 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Haomiao Jia ◽  
Matthew M. Zack ◽  
William W. Thompson ◽  
Shanta R. Dube

Sign in / Sign up

Export Citation Format

Share Document