Occurrence of Toxigenic Fungi and Aflatoxin Potential of Aspergillus spp. Strains Associated with Subsistence Farmed Crops in Haiti

2017 ◽  
Vol 80 (4) ◽  
pp. 626-631 ◽  
Author(s):  
Junior Aristil ◽  
Giovanni Venturini ◽  
Alberto Spada

ABSTRACT Subsistence farming and poor storage facilities favor toxigenic fungal contamination and mycotoxin accumulation in staple foods from tropical countries such as Haiti. The present preliminary study was designed to evaluate the occurrence of toxigenic fungi in Haitian foodstuffs to define the mycotoxin risk associated with Haitian crops. The objectives of this research were to determine the distribution of toxigenic fungi in the Haitian crops maize, moringa, and peanut seeds and to screen Aspergillus section Flavi (ASF) isolates for production of aflatoxins B1 and G1 in vitro. Maize, moringa, and peanut samples were contaminated by potential toxigenic fungal taxa, mainly ASF and Fusarium spp. The isolation frequency of Aspergillus spp. and Fusarium spp. was influenced by locality and thus by farming systems, storage systems, and weather conditions. Particularly for ASF in peanut and maize samples, isolation frequencies were directly related to the growing season length. The present study represents the first report of contamination by toxigenic fungi and aflatoxin in moringa seeds, posing concerns about the safety of these seeds, which people in Haiti commonly consume. Most (80%) of the Haitian ASF strains were capable of producing aflatoxins, indicating that Haitian conditions clearly favor the colonization of toxigenic ASF strains over atoxigenic strains. ASF strains producing both aflatoxins B1 and G1 were found. Understanding the distribution of toxigenic ASF in Haitian crops and foodstuffs is important for determining accurate toxicological risks because the toxic profile of ASF is species specific. The occurrence of toxigenic fungi and the profiles of the ASF found in various crops highlight the need to prevent formation of aflatoxins in Haitian crops. This study provides relevant preliminary baseline data for guiding the development of legislation regulating the quality and safety of crops in this low-income country.

Author(s):  
Jogendra Singh Nim ◽  
Mohit Yadav ◽  
Lalit Kumar Gautam ◽  
Chaitali Ghosh ◽  
Shakti Sahi ◽  
...  

Background: Xenorhabdus nematophila maintains species-specific mutual interaction with nematodes of Steinernema genus. Type II Toxin Antitoxin (TA) systems, the mazEF TA system controls stress and programmed cell death in bacteria. Objective: This study elucidates the functional characterization of Xn-mazEF, a mazEF homolog in X. nematophila by computational and in vitro approaches. Methods: 3 D- structural models for Xn-MazE toxin and Xn-MazF antitoxin were generated, validated and characterized for protein - RNA interaction analysis. Further biological and cellular functions of Xn-MazF toxin were also predicted. Molecular dynamics simulations of 50ns for Xn-MazF toxin complexed with nucleic acid units (DU, RU, RC, and RU) were performed. The MazF toxin and complete MazEF operon were endogenously expressed and monitored for the killing of Escherichia coli host cells under arabinose induced tightly regulated system. Results: Upon induction, E. coli expressing toxin showed rapid killing within four hours and attained up to 65% growth inhibition, while the expression of the entire operon did not show significant killing. The observation suggests that the Xn-mazEF TA system control transcriptional regulation in X. nematophila and helps to manage stress or cause toxicity leading to programmed death of cells. Conclusion: The study provides insights into structural and functional features of novel toxin, XnMazF and provides an initial inference on control of X. nematophila growth regulated by TA systems.


2001 ◽  
Vol 91 (3) ◽  
pp. 1364-1371 ◽  
Author(s):  
Peter D. Constable

The strong ion approach provides a quantitative physicochemical method for describing the mechanism for an acid-base disturbance. The approach requires species-specific values for the total concentration of plasma nonvolatile buffers (Atot) and the effective dissociation constant for plasma nonvolatile buffers ( K a), but these values have not been determined for human plasma. Accordingly, the purpose of this study was to calculate accurate Atot and K a values using data obtained from in vitro strong ion titration and CO2tonometry. The calculated values for Atot (24.1 mmol/l) and K a (1.05 × 10−7) were significantly ( P < 0.05) different from the experimentally determined values for horse plasma and differed from the empirically assumed values for human plasma (Atot = 19.0 meq/l and K a = 3.0 × 10−7). The derivatives of pH with respect to the three independent variables [strong ion difference (SID), Pco 2, and Atot] of the strong ion approach were calculated as follows: [Formula: see text] [Formula: see text], [Formula: see text]where S is solubility of CO2 in plasma. The derivatives provide a useful method for calculating the effect of independent changes in SID+, Pco 2, and Atot on plasma pH. The calculated values for Atot and K a should facilitate application of the strong ion approach to acid-base disturbances in humans.


2019 ◽  
Vol 34 (13) ◽  
pp. 842-850
Author(s):  
Emmanuel Segnon Sogbossi ◽  
Damienne Houekpetodji ◽  
Toussaint G. Kpadonou ◽  
Yannick Bleyenheuft

Cerebral palsy is a common cause of pediatric motor disability. Although there are increasing amounts of data on the clinical profile of children with cerebral palsy in high-income countries, corresponding information about low-income countries and developing countries is lacking. Therefore, we aimed to describe the clinical spectrum of cerebral palsy in children in Benin, a representative West African low-income country. Our cross-sectional observational study included 114 children with cerebral palsy recruited from community-based rehabilitation centers and teaching hospitals (median age: 7 years, range 2-17; sex: 66% male). Data were collected through review of medical records and interviews with children’s mothers. Assessment included risk factors, clinical subtypes according to the Surveillance of CP in Europe criteria, severity of motor outcome scored by the Gross Motor Function Classification System (GMFCS) and Manual Ability Classification System, comorbidities, and school attendance. We recorded a high prevalence of intrapartum adverse events. Seventeen percent of children had postneonatal cerebral palsy, with cerebral malaria being the most common cause. Most children were severely affected (67.5% as bilateral spastic; 54.4% as GMFCS IV or V), but severity declined substantially with age. Only 23% of the children with cerebral palsy had attended school. Poor motor outcomes and comorbidities were associated with school nonattendance. These results suggest that intrapartum risk factors and postnatal cerebral malaria in infants are opportune targets for prevention of cerebral palsy in Sub-Saharan low-income countries.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 78
Author(s):  
Lachlan A. Bourke ◽  
Christina N. Zdenek ◽  
Edgar Neri-Castro ◽  
Melisa Bénard-Valle ◽  
Alejandro Alagón ◽  
...  

The toxin composition of snake venoms and, thus, their functional activity, can vary between and within species. Intraspecific venom variation across a species’ geographic range is a major concern for antivenom treatment of envenomations, particularly for countries like French Guiana that lack a locally produced antivenom. Bothrops asper and Bothrops atrox are the most medically significant species of snakes in Latin America, both producing a variety of clinical manifestations, including systemic bleeding. These pathophysiological actions are due to the activation by the venom of the blood clotting factors Factor X and prothrombin, thereby causing severe consumptive coagulopathy. Both species are extremely wide-ranging, and previous studies have shown their venoms to exhibit regional venom variation. In this study, we investigate the differential coagulotoxic effects on human plasma of six venoms (four B. asper and two B. atrox samples) from different geographic locations, spanning from Mexico to Peru. We assessed how the venom variation of these venom samples affects neutralisation by five regionally available antivenoms: Antivipmyn, Antivipmyn-Tri, PoliVal-ICP, Bothrofav, and Soro Antibotrópico (SAB). The results revealed both inter- and intraspecific variations in the clotting activity of the venoms. These variations in turn resulted in significant variation in antivenom efficacy against the coagulotoxic effects of these venoms. Due to variations in the venoms used in the antivenom production process, antivenoms differed in their species-specific or geographical neutralisation capacity. Some antivenoms (PoliVal-ICP, Bothrofav, and SAB) showed species-specific patterns of neutralisation, while another antivenom (Antivipmyn) showed geographic-specific patterns of neutralisation. This study adds to current knowledge of Bothrops venoms and also illustrates the importance of considering evolutionary biology when developing antivenoms. Therefore, these results have tangible, real-world implications by aiding evidence-based design of antivenoms for treatment of the envenomed patient. We stress that these in vitro studies must be backed by future in vivo studies and clinical trials before therapeutic guidelines are issued regarding specific antivenom use in a clinical setting.


2021 ◽  
Vol 22 (9) ◽  
pp. 4368
Author(s):  
Heriberto Rodriguez-Martinez ◽  
Emilio A. Martinez ◽  
Juan J. Calvete ◽  
Fernando J. Peña Vega ◽  
Jordi Roca

Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA—the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Christopher C. Evans ◽  
Katherine M. Day ◽  
Yi Chu ◽  
Bridget Garner ◽  
Kaori Sakamoto ◽  
...  

Abstract Background The Mongolian jird (Meriones unguiculatus) has long been recognized as a permissive host for the filarial parasite Brugia malayi; however, it is nonpermissive to another filarial parasite, canine heartworm (Dirofilaria immitis). By elucidating differences in the early response to infection, we sought to identify mechanisms involved in the species-specific clearance of these parasites. We hypothesized that the early clearance of D. immitis in intraperitoneal infection of the jird is immune mediated and parasite species dependent. Methods Jird peritoneal exudate cells (PECs) were isolated and their attachment to parasite larvae assessed in vitro under various conditions: D. immitis and B. malayi cultured separately, co-culture of both parasites, incubation before addition of cells, culture of heat-killed parasites, and culture with PECs isolated from jirds with mature B. malayi infection. The cells attaching to larvae were identified by immunohistochemistry. Results In vitro cell attachment to live D. immitis was high (mean = 99.6%) while much lower for B. malayi (mean = 5.56%). This species-specific attachment was also observed when both filarial species were co-cultured, with no significant change from controls (U(9, 14) = 58.5, p = 0.999). When we replicated these experiments with PECs derived from jirds subcutaneously infected with B. malayi, the results were similar (99.4% and 4.72% of D. immitis and B. malayi, respectively, exhibited cell attachment). Heat-killing the parasites significantly reduced cell attachment to D. immitis (mean = 71.9%; U(11, 14) = 7.5, p < 0.001) while increasing attachment to B. malayi (mean = 16.7%; U(9, 15) = 20, p = 0.002). Cell attachment to both species was reduced when larvae were allowed a 24-h pre-incubation period prior to the addition of cells. The attaching cells were identified as macrophages by immunohistochemistry. Conclusions These results suggest a strongly species-dependent response from which B. malayi could not confer protection by proxy in co-culture. The changes in cell attachment following heat-killing and pre-incubation suggest a role for excretory/secretory products in host immune evasion and/or antigenicity. The nature of this attachment is the subject of ongoing study and may provide insight into filarial host specificity.


2021 ◽  
pp. 097639962097420
Author(s):  
Gaurav Bhattarai ◽  
Binita Subedi

The global economy has been severely paralysed, owing to the unprecedented crisis triggered by the COVID-19 pandemic, and different studies have indicated that the crisis is relatively more maleficent to the lower-income and middle-income economies. Methodologically, this study relied on the review and analysis of the grey literature, media reporting and data published by the Asian Development Bank, United Nations Conference on Trade and Development (UNCTAD), United Nations (UN), World Bank, International Monetary Fund (IMF) among others. The article begins by describing the impact of the pandemic on low-income and middle-income countries, and it discusses how they have responded to the crisis. While discussions have surfaced regarding whether COVID-19 will reverse the process of globalization, what will be its impact on the low-income country like Nepal? The study also highlights that with foreign direct investments speculated to shrink and foreign assistance and remittance taking a hit, how is Nepal struggling to keep its economy afloat? Analysing the new budget that the government unveiled in 2020, this study concludes with a note that instead of effectively implementing the plans and policies directed by the budget, Nepal is unnecessarily engaged in political mess and is needlessly being dragged into the geopolitical complications.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Fabienne Archer ◽  
Alexandra Bobet-Erny ◽  
Maryline Gomes

AbstractThe number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.


Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 438
Author(s):  
Mary E. Ridout ◽  
Bruce Godfrey ◽  
George Newcombe

Fusarium species coexist as toxigenic, systemic pathogens in sweet corn seed production in southwestern Idaho, USA. We hypothesized that fungal antagonists of seedborne Fusarium would differentially alter production of Fusarium mycotoxins directly and/or systemically. We challenged the Fusarium complex by in vitro antagonism trials and in situ silk and seed inoculations with fungal antagonists. Fungal antagonists reduced growth and sporulation of Fusarium species in vitro from 40.5% to as much as 100%. Pichia membranifaciens and Penicillium griseolum reduced fumonisin production by F. verticillioides by 73% and 49%, respectively, while P. membranifaciens and a novel Penicillium sp. (WPT) reduced fumonisins by F. proliferatum 56% and 78%, respectively. In situ, pre-planting inoculation of seeds with Penicillium WPT systemically increased fumonisins in the resulting crop. Morchella snyderi applied to silks of an F1 cross systemically reduced deoxynivalenol by 47% in mature seeds of the F2. Antagonists failed to suppress Fusarium in mature kernels following silk inoculations, although the ratio of F. verticillioides to total Fusarium double with some inoculants. Fusarium mycotoxin concentrations in sweet corn seed change systemically, as well as locally, in response to the presence of fungal antagonists, although in Fusarium presence in situ was not changed.


Sign in / Sign up

Export Citation Format

Share Document