Prevalence of Salmonella, Campylobacter, and Shiga Toxin–Producing Escherichia coli on the Surfaces of Raw Poultry Packages

2018 ◽  
Vol 81 (10) ◽  
pp. 1707-1712
Author(s):  
FUR-CHI CHEN ◽  
SANDRIA GODWIN ◽  
ANGELA GREEN ◽  
SHAHIDULLAH CHOWDHURY ◽  
RICHARD STONE

ABSTRACT Contamination on the exterior surfaces of raw poultry packages can be transmitted to hands and food contact surfaces during shopping and handling. This study compared the level of microbial contamination and prevalence of foodborne pathogens on the surfaces of raw poultry packages as related to the types of products, types of packaging, and packaging conditions. Packages of whole chicken, cut-up chicken (breast and leg quarter), and ground turkey were purchased from retail stores. Aerobic plate counts (APCs) were significantly different (P < 0.05) among types of products and packaging materials, with ground turkey packages and the heat-sealed, high-walled containers being the lowest. APCs were significantly lower (P < 0.05) when the packages were intact and tight compared with intact and loose. Of the 105 packages, there were 10 (9.5%) with the presence of either Shiga toxin–producing Escherichia coli (STEC) or Campylobacter; of those packages, 6 (5.7%) were positive for STEC, 7 (6.7%) were positive for Campylobacter, and 3 (2.9%) were positive for both pathogens on the surfaces. Salmonella was not detected on the surfaces of all tested packages. Surfaces of whole chicken packages were significantly (P < 0.001) more likely to have detectable levels of Campylobacter and STEC than those of cut-up chicken packages. Packages that were positive for Campylobacter and/or STEC had significantly (P < 0.005) higher APCs than negative packages. The results suggested that STEC is another significant pathogen present on the surfaces of poultry packages in addition to Campylobacter. The presence of STEC on the external packaging of raw poultry raises a concern because consumers may not expect such pathogens on the surfaces of poultry packages.

2012 ◽  
Vol 75 (8) ◽  
pp. 1418-1428 ◽  
Author(s):  
RONG WANG ◽  
JAMES L. BONO ◽  
NORASAK KALCHAYANAND ◽  
STEVEN SHACKELFORD ◽  
DAYNA M. HARHAY

Shiga toxin–producing Escherichia coli (STEC) strains are important foodborne pathogens. Among these, E. coli O157:H7 is the most frequently isolated STEC serotype responsible for foodborne diseases. However, the non-O157 serotypes have been associated with serious outbreaks and sporadic diseases as well. It has been shown that various STEC serotypes are capable of forming biofilms on different food or food contact surfaces that, when detached, may lead to cross-contamination. Bacterial cells at biofilm stage also are more tolerant to sanitizers compared with their planktonic counterparts, which makes STEC biofilms a serious food safety concern. In the present study, we evaluated the potency of biofilm formation by a variety of STEC strains from serotypes O157:H7, O26:H11, and O111:H8; we also compared biofilm tolerance with two types of common sanitizers, a quaternary ammonium chloride–based sanitizer and chlorine. Our results demonstrated that biofilm formation by various STEC serotypes on a polystyrene surface was highly strain-dependent, whereas the two non-O157 serotypes showed a higher potency of pellicle formation at air-liquid interfaces on a glass surface compared with serotype O157:H7. Significant reductions of viable biofilm cells were achieved with sanitizer treatments. STEC biofilm tolerance to sanitization was strain-dependent regardless of the serotypes. Curli expression appeared to play a critical role in STEC biofilm formation and tolerance to sanitizers. Our data indicated that multiple factors, including bacterial serotype and strain, surface materials, and other environmental conditions, could significantly affect STEC biofilm formation. The high potential for biofilm formation by various STEC serotypes, especially the strong potency of pellicle formation by the curli-positive non-O157 strains with high sanitization tolerance, might contribute to bacterial colonization on food contact surfaces, which may result in downstream product contamination.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1459
Author(s):  
Alexandra Calle ◽  
Mariana Fernandez ◽  
Brayan Montoya ◽  
Marcelo Schmidt ◽  
Jonathan Thompson

Ultraviolet (UV-C) light-emitting diode (LED) light at a wavelength of 250–280 nm was used to disinfect skinless chicken breast (CB), stainless steel (SS) and high-density polyethylene (HD) inoculated with Salmonella enterica. Irradiances of 2 mW/cm2 (50%) or 4 mW/cm2 (100%) were used to treat samples at different exposure times. Chicken samples had the lowest Salmonella reduction with 1.02 and 1.78 Log CFU/cm2 (p ≤ 0.05) after 60 and 900 s, respectively at 50% irradiance. Higher reductions on CB were obtained with 100% illumination after 900 s (>3.0 Log CFU/cm2). Salmonella on SS was reduced by 1.97 and 3.48 Log CFU/cm2 after 60 s of treatment with 50% and 100% irradiance, respectively. HD showed a lower decrease of Salmonella, but still statistically significant (p ≤ 0.05), with 1.25 and 1.77 Log CFU/cm2 destruction for 50 and 100% irradiance after 60 s, respectively. Longer exposure times of HD to UV-C yielded up to 99.999% (5.0 Log CFU/cm2) reduction of Salmonella with both irradiance levels. While UV-C LED treatment was found effective to control Salmonella on chicken and food contact surfaces, we propose three mechanisms contributing to reduced efficacy of disinfection: bacterial aggregation, harboring in food and work surface pores and light absorption by fluids associated with CB.


2016 ◽  
Vol 79 (7) ◽  
pp. 1143-1153 ◽  
Author(s):  
JOHN C. FRELKA ◽  
GORDON R. DAVIDSON ◽  
LINDA J. HARRIS

ABSTRACT After harvest, inshell walnuts are dried using low-temperature forced air and are then stored in bins or silos for up to 1 year. To better understand the survival of bacteria on inshell walnuts, aerobic plate counts (APCs) and Escherichia coli–coliform counts (ECCs) were evaluated during commercial storage (10 to 12°C and 63 to 65% relative humidity) over 9 months. APCs decreased by 1.4 to 2.0 log CFU per nut during the first 5 months of storage, and ECCs decreased by 1.3 to 2.2 log CFU per nut in the first month of storage. Through the remaining 4 to 8 months of storage, APCs and ECCs remained unchanged (P > 0.05) or decreased by <0.15 log CFU per nut per month. Similar trends were observed on kernels extracted from the inshell walnuts. APCs and ECCs were consistently and often significantly higher on kernels extracted from visibly broken inshell walnuts than on kernels extracted from visibly intact inshell walnuts. Parameters measured in this study were used to determine the survival of five-strain cocktails of E. coli O157:H7, Listeria monocytogenes, and Salmonella inoculated onto freshly hulled inshell walnuts (~8 log CFU/g) after simulated commercial drying (10 to 12 h; 40°C) and simulated commercial storage (12 months at 10°C and 65% relative humidity). Populations declined by 2.86, 5.01, and 4.40 log CFU per nut for E. coli O157:H7, L. monocytogenes, and Salmonella, respectively, after drying and during the first 8 days of storage. Salmonella populations changed at a rate of −0.33 log CFU per nut per month between days 8 and 360, to final levels of 2.83 ± 0.79 log CFU per nut. E. coli and L. monocytogenes populations changed by −0.17 log CFU per nut per month and −0.26 log CFU per nut per month between days 8 and 360, respectively. For some samples, E. coli or L. monocytogenes populations were below the limit of detection by plating (0.60 log CFU per nut) by day 183 or 148, respectively; at least one of the six samples was positive at each subsequent sampling time by either plating or by enrichment.


2020 ◽  
Author(s):  
Ivan Nastasijevic ◽  
John W. Schmidt ◽  
Marija Boskovic ◽  
Milica Glisic ◽  
Norasak Kalchayanand ◽  
...  

ABSTRACTShiga toxin (stx) -producing Escherichia coli (STEC) are foodborne pathogens that have a significant impact on public health, with those possessing the attachment factor intimin (eae) referred to as enterohemorrhagic E. coli (EHEC) associated with life threatening illnesses. Cattle and beef are considered typical sources of STEC, but their presence in pork products is a growing concern. Therefore, carcasses (n=1536) at two U.S. pork processors were sampled once per season at three stages of harvest (post-stunning skins; post-scald carcasses; chilled carcasses) then examined using PCR for stx and eae, aerobic plate count (APC) and Enterobacteriaceae counts (EBC). Skins, post-scald, and chilled carcasses had prevalence of stx (85.3, 17.5, and 5.4%, respectively), with 82.3, 7.8, and 1.7% respectively, having stx and eae present. All stx positive samples were subjected to culture isolation that resulted in 368 STEC and 46 EHEC isolates. The most frequently identified STEC were serogroup O121, O8, and O91(63, 6.7, and 6.0% of total STEC, respectively). The most frequently isolated EHEC was serotype O157:H7 (63% of total EHEC). Results showed that scalding significantly reduced (P < 0.05) carcass APC and EBC by 3.00 and 2.50 log10 CFU/100 cm2 respectively. A seasonal effect was observed with STEC prevalence lower (P < 0.05) in winter. The data from this study shows significant (P < 0.05) reduction in the incidence of STEC (stx) from 85.3% to 5.4% and of EHEC (stx+eae) from 82.3% to 1.7% within slaughter-to-chilling continuum, respectively, and that potential EHEC can be confirmed present throughout using culture isolation.IMPORTANCESeven serogroups of Shiga toxin-producing Escherichia coli (STEC) are responsible for most (>75%) cases of severe illnesses caused by STEC and are considered adulterants of beef. However, some STEC outbreaks have been attributed to pork products although the same E. coli are not considered adulterants in pork because little is known of their prevalence along the pork chain. The significance of the work presented here is that it identifies disease causing STEC, enterohemorrhagic E. coli (EHEC), demonstrating that these same organisms are a food safety hazard in pork as well as beef. The results show that most STEC isolated from pork are not likely to cause severe disease in humans and that processes used in pork harvest, such as scalding, offer a significant control point to reduce contamination. The results will assist the pork processing industry and regulatory agencies to optimize interventions to improve the safety of pork products.


2013 ◽  
Vol 76 (4) ◽  
pp. 662-667 ◽  
Author(s):  
M. CORCORAN ◽  
D. MORRIS ◽  
N. DE LAPPE ◽  
J. O'CONNOR ◽  
P. LALOR ◽  
...  

Foodborne pathogens can attach to, and survive on, food contact surfaces for long periods by forming a biofilm. Salmonella enterica is the second most common cause of foodborne illness in Ireland. The ability of S. enterica to form a biofilm could contribute to its persistence in food production areas, leading to cross-contamination of products and surfaces. Arising from a large foodborne outbreak of S. enterica serovar Agona associated with a food manufacturing environment, a hypothesis was formulated that the associated Salmonella Agona strain had an enhanced ability to form a biofilm relative to other S. enterica. To investigate this hypothesis, 12 strains of S. enterica, encompassing three S. enterica serovars, were assessed for the ability to form a biofilm on multiple food contact surfaces. All isolates formed a biofilm on the contact surfaces, and there was no consistent trend for the Salmonella Agona outbreak strain to produce a denser biofilm compared with other strains of Salmonella Agona or Salmonella Typhimurium. However, Salmonella Enteritidis biofilm was considerably less dense than Salmonella Typhimurium and Salmonella Agona biofilms. Biofilm density was greater on tile than on concrete, polycarbonate, stainless steel, or glass.


LWT ◽  
2020 ◽  
pp. 110501
Author(s):  
Pabasara Weerarathne ◽  
Josh Payne ◽  
Joyjit Saha ◽  
Tony Kountoupis ◽  
Ravi Jadeja ◽  
...  

2015 ◽  
Vol 77 (31) ◽  
Author(s):  
Murni Noor Al Amin ◽  
Wan Rosmiza Zana Wan Dagang

Cross-contamination provides the opportunity for various of bacteria to be deposited on each of the surface contact during meal preparation. Raw poultry especially raw chicken was the main reservoir of foodborne pathogens that can cause foodborne diseases. Therefore, a study on the potential of cross-contamination contribute to spread E. coli, Salmonella spp. and S. aureus on the kitchen surfaces during chicken preparation was conducted. A total of 36 isolates were collected from six sampling sites before and after the chicken preparation. The enumeration of the bacteria from the sampling sites showed a significant change in the mean total plate counts (TPC) of the isolates before and after the chicken preparation. These results emphasized that cross-contamination occurred around the sampling sites during the preparation of the chicken. Isolation and identification of the three foodborne pathogens, E. coli, Salmonella spp. and S. aureus were carried out on its respectively selective and differential media. The presumptive identified foodborne pathogens were confirmed as E. coli, Salmonella spp. and S. aureus according to their microscopic and biochemical characteristics.


2019 ◽  
Vol 83 (3) ◽  
pp. 460-466
Author(s):  
GUANGZHU YANG ◽  
SHUHONG ZHANG ◽  
YUANBIN HUANG ◽  
QINGHUA YE ◽  
JUMEI ZHANG ◽  
...  

ABSTRACT Non-O157 Shiga toxin–producing Escherichia coli (STEC) strains are significant foodborne pathogens that can cause acute diarrhea in humans. This study was conducted to investigate the contamination by non-O157 STEC in different types of food sold at retail markets in the People's Republic of China and to characterize non-O157 STEC strains. From May 2012 to April 2014, 1,200 retail food samples were collected from markets in 24 cities in China. Forty-four non-O157 isolates were recovered from 43 STEC-positive samples. Of the isolates, 22 and 19 carried the stx1 and stx2 genes, respectively, and 3 harbored both stx1 and stx2. stx1a and stx2a were the most prevalent stx subtypes. Other virulence genes, ent, hlyA, astA, eae, espB, iha, subAB, and tia, were commonly detected. Diverse O serogroups were identified among these isolates. Multilocus sequence typing indicated the high genetic diversity of the isolates. Thirty-two sequence types (STs) were identified among the 44 isolates, with ST383 (9.09%), ST134 (6.82%), and ST91 (6.82%) the most prevalent. Nine new STs were found. The isolates had a high prevalence of resistance to cephalothin, ampicillin, tetracycline, trimethoprim-sulfamethoxazole, nalidixic acid, streptomycin, and chloramphenicol. Twenty isolates (45.45%) were resistant to at least three antibiotics. This study provides updated surveillance data for non-O157 STEC isolates from foods sold at retail markets. Virulent and multidrug-resistant non-O57 STEC strains were isolated from all types of food. Our findings highlight the need for increased monitoring of non-O157 STEC in retail foods. HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document