scholarly journals Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei)

2011 ◽  
Vol 54 (2) ◽  
Author(s):  
Giovanni Chiodini ◽  
Rosario Avino ◽  
Stefano Caliro ◽  
Carmine Minopoli

Long time series of fluid pressure and temperature within a hydrothermal system feeding the Solfatara fumaroles are investigated here, on the basis of the chemical equilibria within the CO2&ndash;H2O&ndash;H2&ndash;CO gas system. The Pisciarelli fumarole external to Solfatara crater shows an annual cycle of CO contents that indicates the occurrence of shallow secondary processes that mask the deep signals. In contrast, the Bocca Grande and Bocca Nova fumaroles located inside Solfatara crater do not show evidence of secondary processes, and their compositional variations are linked to the temperature&ndash;pressure changes within the hydrothermal system. The agreement between geochemical signals and the ground movements of the area (bradyseismic phenomena) suggests a direct relationship between the pressurization process and the ground uplift. Since 2007, the gas geoindicators have indicated pressurization of the system, which is most probably caused by the arrival of deep gases with high CO2 contents in the shallow parts of the hydrothermal system. This pressurization process causes critical conditions in the hydrothermal system, as highlighted by the increase in the fumarole temperature, the opening of new vents, and the localized seismic activity. If the pressurization process continues with time, it is not possible to rule out the occurrence of phreatic explosions.<br />

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
A. Lima ◽  
R. J. Bodnar ◽  
B. De Vivo ◽  
F. J. Spera ◽  
H. E. Belkin

Several recent models that have been put forth to explain bradyseism at Campi Flegrei (CF), Italy, are discussed. Data obtained during long-term monitoring of the CF volcanic district has led to the development of a model based on lithological-structural and stratigraphic features that produce anisotropic and heterogeneous permeability features showing large variations both horizontally and vertically; these data are inconsistent with a model in which bradyseism is driven exclusively by shallow magmatic intrusions. CF bradyseism events are driven by cyclical magmatic-hydrothermal activity. Bradyseism events are characterized by cyclical, constant invariant signals repeating over time, such as area deformation along with a spatially well-defined seismogenic volume. These similarities have been defined as “bradyseism signatures” that allow us to relate the bradyseism with impending eruption precursors. Bradyseism is governed by an impermeable shallow layer (B-layer), which is the cap of an anticlinal geological structure culminating at Pozzuoli, where maximum uplift is recorded. This B-layer acts as a throttling valve between the upper aquifer and the deeper hydrothermal system that experiences short (1-102 yr) timescale fluctuations between lithostatic/hydrostatic pressure. The hydrothermal system also communicates episodically with a cooling and quasi-steady-state long timescale (103-104 yr) magmatic system enclosed by an impermeable carapace (A layer). Connectivity between hydrostatic and lithostatic reservoirs is episodically turned on and off causing alternatively subsidence (when the systems are connected) or uplift (when the systems are disconnected), depending on whether permeability by fractures is established or not. Earthquake swarms are the manifestation of hydrofracturing which allows fluid expansion; this same process promotes silica precipitation that seals cracks and serves to isolate the two reservoirs. Faults and fractures promote outgassing and reduce the vertical uplift rate depending on fluid pressure gradients and spatial and temporal variations in the permeability field. The miniuplift episodes also show “bradyseism signatures” and are well explained in the context of the short timescale process.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1051
Author(s):  
Dmitri Rouwet ◽  
Giancarlo Tamburello ◽  
Tullio Ricci ◽  
Alessandra Sciarra ◽  
Francesco Capecchiacci ◽  
...  

The Fangaia mud pool provides a “window” into the hydrothermal system underlying the degassing Solfatara crater, which is the most active volcanic centre inside the restless Campi Flegrei caldera, Southern Italy. The present study aimed at unravelling the degassing dynamics of CO2 and H2S flushing through the pH 1.2 steam-heated Fangaia mud pool, an ideal field laboratory as a proxy of an active crater lake. Our results from MultiGAS measurements above Fangaia’s surface show that H2S scrubbing, demonstrated by high CO2/H2S ratios, was most efficient in the portions of the basin affected by diffusive degassing. Convective bubbling degassing instead was the most effective mechanism to release gas in quantitative terms, with lower CO2/H2S ratios, similar to the Solfatara crater fumaroles, the high-T end member of the hydrothermal system. Unsurprisingly, total estimated CO2 and H2S fluxes from the small Fangaia pool (~184 m2 in June 2017) were at least two orders of magnitude lower (CO2 flux < 64 t/d, H2S flux < 0.5 t/d) than the total CO2 flux of the Campi Flegrei caldera (up to 3000 t/d for CO2), too low to affect the gas budget for the caldera, and hence volcano monitoring routines. Given the role of the rising gas as “sediment stirrer”, the physical and chemical processes behind gas migration through a mud pool are arguably the creating processes giving origin to Fangaia. Follow-up studies of this so far unique campaign will help to better understand the fast dynamics of this peculiar degassing feature.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Joe Tien ◽  
Le Li ◽  
Ozgur Ozsun ◽  
Kamil L. Ekinci

In order to understand how interstitial fluid pressure and flow affect cell behavior, many studies use microfluidic approaches to apply externally controlled pressures to the boundary of a cell-containing gel. It is generally assumed that the resulting interstitial pressure distribution quickly reaches a steady-state, but this assumption has not been rigorously tested. Here, we demonstrate experimentally and computationally that the interstitial fluid pressure within an extracellular matrix gel in a microfluidic device can, in some cases, react with a long time delay to external loading. Remarkably, the source of this delay is the slight (∼100 nm in the cases examined here) distension of the walls of the device under pressure. Finite-element models show that the dynamics of interstitial pressure can be described as an instantaneous jump, followed by axial and transverse diffusion, until the steady pressure distribution is reached. The dynamics follow scaling laws that enable estimation of a gel's poroelastic constants from time-resolved measurements of interstitial fluid pressure.


2021 ◽  
Vol 40 (6) ◽  
pp. 413-417
Author(s):  
Chunfang Meng ◽  
Michael Fehler

As fluids are injected into a reservoir, the pore fluid pressure changes in space and time. These changes induce a mechanical response to the reservoir fractures, which in turn induces changes in stress and deformation to the surrounding rock. The changes in stress and associated deformation comprise the geomechanical response of the reservoir to the injection. This response can result in slip along faults and potentially the loss of fluid containment within a reservoir as a result of cap-rock failure. It is important to recognize that the slip along faults does not occur only due to the changes in pore pressure at the fault location; it can also be a response to poroelastic changes in stress located away from the region where pore pressure itself changes. Our goal here is to briefly describe some of the concepts of geomechanics and the coupled flow-geomechanical response of the reservoir to fluid injection. We will illustrate some of the concepts with modeling examples that help build our intuition for understanding and predicting possible responses of reservoirs to injection. It is essential to understand and apply these concepts to properly use geomechanical modeling to design geophysical acquisition geometries and to properly interpret the geophysical data acquired during fluid injection.


2021 ◽  
Author(s):  
Robin Mommers ◽  
Peter Achten ◽  
Jasper Achten ◽  
Jeroen Potma

Abstract In mobile hydraulic applications, more efficient machinery generally translates to smaller batteries or less diesel consumption, and smaller cooling solutions. A key part of such systems are hydrostatic pumps and motors. While these devices have been around for a long time, some of the causes of energy loss in pump and motors are still not properly defined. This paper focuses on one of the causes of energy loss in pumps and motors, by identifying the energy loss as a result of the process of commutation. By nature, all hydrostatic pumps and motors have some form of commutation: the transition from the supply port to the discharge port of the machine (and vice versa). During commutation, the connection between the working chamber and the ports is temporarily closed. The chamber pressure changes by compression or decompression that is the result of the rotation of the working mechanism. Ideally, the connection to one of the ports is opened once the chamber pressure equals the port pressure. When the connection is opened too early or too late, energy is lost. This paper describes a method to predict the commutation loss using a lumped parameter simulation model. To verify these predictions, experimental data of a floating cup pump was compared to the calculated values, which show a decent match. Furthermore, the results show that, depending on the operating conditions, up to 50% of all losses in this pump are caused by improper commutation.


2021 ◽  
Author(s):  
David Jessop ◽  
Roberto Moretti ◽  
Séverine Moune ◽  
Vincent Robert

&lt;p&gt;Fumarolic gas composition and temperature record deep processes that generate and transfer heat and mass towards the surface. &amp;#160;These processes are a result of the emplacement, degassing and cooling of magma and the overturning of the above hydrothermal system. &amp;#160;A reasonable expectation, and too often an unproved assumption, is that fumarole temperatures and the deep heat sources vary on similar timescales. &amp;#160;Yet signals from deep and shallow processes have vastly different temporal variations.&amp;#160; This indicates that signals arising from deep activity may be masked or modified by intervening hydrothermal processes, such as fluid-groundrock reactions in which secondary minerals play a major role. &amp;#160;Clearly, this complicates the interpretation of the signals such as the joint variation of fumarole vent temperature and geochemical ratios in terms of what is occurring at depth. &amp;#160;So what do the differences between the timescales governing deep and shallow processes tell us about the intervening transport mechanisms?&lt;/p&gt;&lt;p&gt;At the volcanic dome of La Soufri&amp;#232;re de Guadeloupe, the Observatoire Volcanologique et Sismologique de la Guadeloupe has performed weekly-to-monthly in-situ vent gas sampling over many years. &amp;#160;These analyses reliably track several geochemical species ratios over time, which provide important information about the evolution of deep processes. &amp;#160;Vent temperature is measured as part of the in-situ sampling, giving a long time series of these measurements. &amp;#160;Here, we look to exploit the temporal variations in these data to establish the common processes, and also to determine why these signals differ. &amp;#160;By fitting sinusoids to the gas-ratio time series we find that several of the deep signals are strongly sinusoidal. &amp;#160;For example, the He/CH&lt;sub&gt;4&lt;/sub&gt; and CO&lt;sub&gt;2&lt;/sub&gt;/CH&lt;sub&gt;4&lt;/sub&gt; ratios, which involve conservative components and mark the injection of deep and hot magmatic fluids, oscillate on a timescale close to 3 years. We also analyse the frequency content of the temperature measurements since 2011 and find that such long signals are not seen. &amp;#160;This may be due to internal buffering by the hydrothermal system, but other external forcings are also present. &amp;#160;From these data we build up a more informed model of the heat-and-mass supply chain from depth to the surface. &amp;#160;This will potentially allow us to predict future unrest (e.g. thermal crises, seismic swarms), and distinguish between sources of unrest.&lt;/p&gt;


Clay Minerals ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 425-437 ◽  
Author(s):  
P. L. Hall

AbstractFluid pressures in argillaceous sediments depend on, inter alia, mechanical stresses, temperature, diagenetic volume changes and permeability. However, the relative influence of the pressuring mechanisms depends critically upon the long time-scale compliance, C, of the overpressured layer.In sediments undergoing first-time burial and currently exposed to their historically maximum applied stresses, C can be relatively large. Here, fluid pressure increases are principally due to mechanical causes, and overpressuring will be associated with undercompaction. The tendency for undercompaction (compaction disequilibrium) depends on the sediment thickness, burial rate and vertical permeability. In other cases, when applied stresses have been reduced by uplift, or when impermeable hard caps or seals have been formed, C may be substantially smaller. Here pore pressures may be predominantly controlled by diagenetic and aquathermal processes, with mechanical (undercompaction) phenomena being relatively less significant.Three-dimensionally sealed overpressured zones may exhibit vertical fluid pressure discontinuities. Within a sealed aquifer, fluid pressures may rise to almost lithostatic values, relieved by episodic fracturing of the seal.


Sign in / Sign up

Export Citation Format

Share Document