Development of Air Supply Control Technology in Sidestream MLE Process by Measuring Conductivity

2020 ◽  
Vol 42 (3) ◽  
pp. 97-109
Author(s):  
Shinyo Chang ◽  
Pung Shik Shin ◽  
Yeon-Koo Jeong ◽  
Young June Choi

Objectives : This study aimed to achieve improved process performance and energy saving by developing a technology to control the air supply of an aerobic basin by measuring the conductivity in the anoxic basin.Methods : To verify whether conductivity can be used as an operation indicator of biological treatment, the correlation analysis between water quality factor and conductivity of each process was conducted by dividing into summer (methanol input), winter and autumn periods. An empirical formula was presented by briefly arranging the required air quantity formula, and a quick reference was prepared by putting air supply in the conductivity range sequentially. The performance evaluation was judged based on the removal efficiency of ammonia nitrogen and total inorganic nitrogen, SNR and SDNR, the change of air supply, the stability of the process against inflow change.Results and Discussion : The seasonal correlation coefficients of conductivity and water quality items were calculated in the order of ammonia nitrogen, total inorganic nitrogen, DOC, and phosphate in the range of 0.5267 ~ 0.9115. It was found that the conductivity could be used as an operation indicator of the biological treatment process with a correlation coefficient of 0.5 or more. The regression equations for the conductivity and ammonia nitrogen are secured by season, so it is possible to estimate the ammonia nitrogen through the conductivity. At the end of the aerobic basin DO was 3.4 mg/L, the nitrogen treatment efficiency in winter was the best. The aerobic basin DO can be controlled by the air supply, and it can be seen that it is possible to control the air supply and improve the nitrogen treatment efficiency by directly measuring the conductivity having a high correlation with nitrogen. An empirical formula for estimating the required air volume through conductivity and inflow is presented. A' and (B' + X') are 0.0589 (m<sup>3</sup>-air/h)/(m<sup>3</sup>/h)/(μS/cm) and –77.562 (m<sup>3</sup>-air/h)/(m<sup>3</sup>/h). The result of automatic control of air supply according to the measured conductivity of anoxic tank during winter season showed that total inorganic nitrogen removal efficiency and SDNR were 8.3% and 0.007 g-N/g-MLSS/d higher than the actual plant conditions, respectively. During the automatic control period, the air supply/inflow average ratio was 36 (m<sup>3</sup>-air/h)/(m<sup>3</sup>/h), which could reduce the air supply by 21.7% compared to the actual plant conditions.Conclusions : The air supply can be estimated from the flow rate and conductivity. The air supply control technology of the conductivity-based MLE process will be able to simultaneously improve nitrogen removal efficiency and reduce energy consumption.

Author(s):  
Tomáš Vítěz ◽  
Jana Ševčíková ◽  
Petra Oppeltová

This paper is focused on primary, secondary, and total efficiency evaluation of the wastewater treatment process for chosen small wastewater treatment plant (WWTP) located near the Moravian Karst. Eight wastewater samples were taken during one year in three sampling profiles of WWTP: biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), pH, ammonia nitrogen (N-NH4), nitrite nitrogen (N-NO2), nitrate nitrogen (N-NO3), inorganic nitrogen (Ninorg), total phosphorus (Ptotal). Treatment efficiency by reduction was calculated for all laboratory analyzed indicators and average values were determined for the whole period. Calculated treatment efficiency of indicators BOD, COD and suspended solids was compared with the permissible minimum treatment efficiency of discharged waste water by Government Regulation No. 61/2003 Coll., for the WWTP from 500 to 2 000 PE. Permissible minimum treatment efficiency is not legislatively determined for the primary and secondary level. The results of the work will be used especially to compare results with other similar works.Analyzed values ​​of parameters BOD, COD, suspended solids, N-NH4 at the outflow from wastewater treatment plant were compared with the permissible maximum values at the outflow of the WWTP which the municipality has an obligation to respect according to the decision issued by the District Environment Authority.


Author(s):  
Hamidi Aziz ◽  
Nur Puat ◽  
Motasem Alazaiza ◽  
Yung-Tse Hung

In this study, a sequential batch reactor (SBR) with different types of fibers was employed for the treatment of poultry slaughterhouse wastewater. Three types of fibers, namely, juite fiber (JF), bio-fringe fiber (BF), and siliconised conjugated polyester fiber (SCPF), were used. Four SBR experiments were conducted, using the fibers in different reactors, while the fourth reactor used a combination of these fibers. The treatment efficiency of the different reactors with and without fibers on biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia-nitrogen (NH3-N), phosphorus (P), nitrite (NO2), nitrate (NO3), total suspended solids (TSS), and oil-grease were evaluated. The removal efficiency for the reactors with fibers was higher than that of the reactor without fibers for all pollutants. The treated effluent had 40 mg/L BOD5 and 45 mg/L COD with an average removal efficiency of 96% and 93%, respectively, which meet the discharge limits stated in the Environmental Quality Act in Malaysia.


2019 ◽  
Vol 25 (4) ◽  
pp. 554-560 ◽  
Author(s):  
Jin-Su Kim ◽  
Ji-Young Lee ◽  
Seung-Kyu Choi ◽  
Qian Zhu ◽  
Sang-Ill Lee

This study focuses on nitrification through a biological aerated filter (BAF) that is filled with a zeolite medium at low concentrations of ammonia. The zeolite medium consists of natural zeolite powder. The BAF is operated under two types of media, which are a ball-type zeolite medium and expanded poly propylene (EPP) medium. Nitrification occurred in the zeolite BAF (ZBAF) when the influent concentration of ammonia nitrogen was 3 mg L-1, but the BAF that was filled with an EPP medium did not experience nitrification. The ammonia nitrogen removal efficiency of ZBAF was 63.38% and the average nitrate nitrogen concentration was 1.746 mg/L. The ZBAF was tested again after a comparison experiment to treat pond water, and municipal wastewater mixed pond water. The ZBAF showed remarkable ammonia-nitrogen treatment at low concentration and low temperature. During this period, the average ammonia nitrogen removal efficiency was 64.56%. Especially, when water temperature decreased to 4.7℃, ammonia nitrogen removal efficiency remained 79%. On the other hand, the chemical-oxygen demand (COD) and phosphorus-removal trends were different. The COD and phosphorus did not show as efficient treatment as the ammonia-nitrogen treatment.


2011 ◽  
Vol 71-78 ◽  
pp. 2186-2189 ◽  
Author(s):  
Jian Gen Wang ◽  
Ya Hui Liu

The removal efficiency of CODCr and ammonia nitrogen of the high concentration of ammonia nitrogen from tannery effluent by membrane bioreactor (MBR) was investigated. The results showed that when the operation of MBR is stable, influent CODCr loads are less than 4.8 kg/m3•d, the average removal rate of CODCr was over 88%, the removal rate of ammonia nitrogen reached to 90%; when dissolved oxygen (DO) was 1.2mg/L and 1.8 mg/L, the reactor still has excellent treatment efficiency, and the removal rate of CODCr and ammonia nitrogen can achieved over 90%. In addition, through the study of membrane flux, it is easy to find that membrane flux decreases rapidly, the membrane requires periodic cleansing.


2011 ◽  
Vol 183-185 ◽  
pp. 278-281
Author(s):  
Zhi Xiao Liu ◽  
Jin Long Zuo

With rapid development of food industry, the production of soybean sauce is increasing in recent years. The sauce wastewater is doing greater and greater harm to the water environment. In order to tackle this problem, the operation time on the sauce wastewater treatment were investigated. The results showed that the process has a better effect for ammonia nitrogen, the orthophosphate and COD removal. The effluent ammonia nitrogen was less than 5mg/L and the ammonia nitrogen removal efficiency could reach about 90% with the aeration time 2 h-3.5 h. The orthophosphate increased during the anoxic stage while decreased during the aerobic stage. At the end of the aerobic stage, the orthophosphate concentration and the COD could reach about 1mg/L and 21 mg/L respectively when aeration time was 2 h-3.5 h. The better operation time (the aeration time) was at 2 h-3.5 h and the system could get a good water quality for sauce wastewater treatment.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Amalesh Bera ◽  
Manojit Bhattacharya ◽  
Bidhan Chandra Patra ◽  
Utpal Kumar Sar

The ichthyofauna in relation to water quality was studied on monthly basis from March, 2010 to February, 2011 in the Kangsabati Reservoir, West Bengal. The study revealed that physicochemical parameters of Kangsabati Reservoir were congenial for 39 fish species of commercial importance, belonging to 7 orders, 15 families, and 26 genera. The Cypriniformes were dominant with 17 species, followed by Siluriformes and Perciformes, with 7 species each, Channiformes with 3 species, Osteoglossiformes and Synbranchiformes with 2 species each, and Anguilliformes with 1 species. Regarding their conservation status, 27 species were of least concern, 1 species was vulnerable, 6 species were near threatened, 1 species was data deficient, and 4 species were not evaluated (IUCN-Version 2014.1). Economical values have also been evaluated. Water parameters such as temperature, pH, alkalinity, dissolved oxygen, hardness, free CO2, salinity, total inorganic nitrogen, and phosphate were recorded and found suitable for fish production. Conductivity, transparency, and high chloride level are minor limiting factor that may needs rectification for improved fisheries management.


2020 ◽  
Vol 12 ◽  
pp. 251-262
Author(s):  
Y Shao ◽  
H Zhong ◽  
X Mao ◽  
H Zhang

The frequency of water exchange and reducing the risk of eutrophication to surrounding water bodies have always been water-quality control issues in recirculating aquaculture systems. In this study, maize straw biochar prepared through pyrolysis showed great potential for both bacterial immobilization and pollutant adsorption. Heterotrophic bacterial strains of Sphingomonas sp. PDD-57b-25 and Acinetobacter towneri were isolated in situ from wastewater for pollutant remediation through a 16S rDNA-based method, which has been rarely reported to date. The selected strains had higher ammonia nitrogen (NH4+-N, 63%), nitrite nitrogen (NO2--N, 38%), nitrate nitrogen (NO3--N, 25%) and total phosphorus (TP, 35%) assimilation capacities than those of other widely applied bacteria under similar medium conditions. In addition, more NH4+-N (+16%), NO2--N (+14%), NO3--N (+17%) and TP (+19%) was removed by biochar-immobilized isolated strains than dissociated strains, suggesting their use may provide a means of improving water-quality control in recirculating aquaculture. With specific additions (4 g l-1) of biochar-immobilized Sphingomonas sp. PDD-57b-25 and A. towneri, the dissolved inorganic nitrogen (approximately 0.45 mg l-1) and TP (approximately 0.09 mg l-1) levels were maintained below the clean water threshold for recirculating aquaculture of crab Eriocheir sinensis. Furthermore, the added strains exhibited high bio-safety and were capable of improving the yield and quality of crabs. Results indicate the potential applicability of biochar-immobilized Sphingomonas sp. PDD-57b-25 and A. towneri in agricultural sewage treatments. Further, the experimental methodology developed here may be used for the exploration of new strains for practical aquaculture.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Wahyu Widayat ◽  
Suprihatin Suprihatin ◽  
Arie Herlambang

In big cities, the water quality of rivers used as the main raw water sources is getting worse and worse. That is caused by a lot of improper wastewater management systems, especially in industrial and settlement areas. As an example, the raw water of PDAM TKR Bojong Renged which is taken from Cisadane  Rives contains Ammonia 3.8 mg/l and it means that the content is not allowed to be used as the raw water for drinking water purpose. To cope with the problem, a bofiltration process can be used as one alternative to reduce Ammonia till the required standard quality.  A honeycomb tube type made plastic was the media of biofilter reactor. Operational condition was varied with HRT (Hydrolysis Retention Time) between 1-4 hours and air supply between 0-30 l/minute. The best process condition was found at 2 hour-HRT and 20 l/minute air supply and the Ammonia removal efficiency was about 65%. The linear regression equation was  ya  = -91.19xa + 77.12, where Y is for removal efficiency and the axis X is for Ammonia loading.  Keywords:  raw  water quality, ammonia, biofiltration, honeycomb tube, removal efficiency,


2019 ◽  
Vol 9 (2) ◽  
pp. 17-27
Author(s):  
Nway Nway Khaing ◽  
Theingi Ye Myint ◽  
Cho Cho Thin Kyi

This research was carried out using lab-scaled Integrated Fixed Film Activated Sludge (IFAS) process with fabious media and anoxic process in order to reduce the concentration of ammonia nitrogen and nitrate nitrogen in municipal wastewater from Yangon City, Myanmar. The required wastewater sample was collected from the wastewater treatment plant of Yangon City Development Committee (YCDC). Ten experiments were conducted with five operational conditions and they lasted about four months from February to May 2018. The rate of air supply for the aeration tank through these experiments was about 8 m3 /day. This paper describes the evaluation on nitrogen removal efficiency of the lab-scaled treatment system depending on the results from the experiments. Due to the different operational conditions through these experiments, the F/M ratio of IFAS process varied between 0.1 and 0.9 d -1 and SRT of IFAS process ranged between 6.0 days and 8.3 days. Moreover, the F/M ratio fluctuated between 0.2 d -1 and 0.7 d -1 as well as the Specific Rate of Denitrification (SRDN) altered between 0.23 g NO3-N/g MLSS and 0.33 g NO3-N/g MLSS in the anoxic process. According to the outcomes of the experiments, the maximum removal efficiency for ammonia nitrogen and nitrate nitrogen were about 98.2% and 97.7%, respectively. However, the optimum treatment efficiency for both NH3-N and NO3-N concentration was obtained at the ninth experiment with about 0.1 d-1 of the F/M ratio and about 6.4 days of SRT in aerobic reactor while the F/M ratio, SRDN and anoxic residence time of anoxic process were about 0.26 d-1 , 0.27 g NO3-N/ g MLSS and 48 hours, respectively. About 500 mg/l of ammonia nitrogen can be reduced to about 30 mg/l and about 2600 mg/l of nitrate nitrogen can be reduced to about 61 mg/l, respectively in this ninth experiment. The optimum treatment efficiency for ammonia nitrogen and nitrate nitrogen were about 94.0 % and 98.0 %, respectively.


Sign in / Sign up

Export Citation Format

Share Document