scholarly journals Bounding the monomial index and (1,l)-weight choosability of a graph

2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Ben Seamone

Graph Theory International audience Let G = (V,E) be a graph. For each e ∈E(G) and v ∈V(G), let Le and Lv, respectively, be a list of real numbers. Let w be a function on V(G) ∪E(G) such that w(e) ∈Le for each e ∈E(G) and w(v) ∈Lv for each v ∈V(G), and let cw be the vertex colouring obtained by cw(v) = w(v) + ∑ₑ ∋vw(e). A graph is (k,l)-weight choosable if there exists a weighting function w for which cw is proper whenever |Lv| ≥k and |Le| ≥l for every v ∈V(G) and e ∈E(G). A sufficient condition for a graph to be (1,l)-weight choosable was developed by Bartnicki, Grytczuk and Niwczyk (2009), based on the Combinatorial Nullstellensatz, a parameter which they call the monomial index of a graph, and matrix permanents. This paper extends their method to establish the first general upper bound on the monomial index of a graph, and thus to obtain an upper bound on l for which every admissible graph is (1,l)-weight choosable. Let ∂2(G) denote the smallest value s such that every induced subgraph of G has vertices at distance 2 whose degrees sum to at most s. We show that every admissible graph has monomial index at most ∂2(G) and hence that such graphs are (1, ∂2(G)+1)-weight choosable. While this does not improve the best known result on (1,l)-weight choosability, we show that the results can be extended to obtain improved bounds for some graph products; for instance, it is shown that G □ Kn is (1, nd+3)-weight choosable if G is d-degenerate.

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Richard Anstee ◽  
Balin Fleming ◽  
Zoltán Füredi ◽  
Attila Sali

International audience The present paper connects sharpenings of Sauer's bound on forbidden configurations with color critical hypergraphs. We define a matrix to be \emphsimple if it is a $(0,1)-matrix$ with no repeated columns. Let $F$ be $a k× l (0,1)-matrix$ (the forbidden configuration). Assume $A$ is an $m× n$ simple matrix which has no submatrix which is a row and column permutation of $F$. We define $forb(m,F)$ as the best possible upper bound on n, for such a matrix $A$, which depends on m and $F$. It is known that $forb(m,F)=O(m^k)$ for any $F$, and Sauer's bond states that $forb(m,F)=O(m^k-1)$ fore simple $F$. We give sufficient condition for non-simple $F$ to have the same bound using linear algebra methods to prove a generalization of a result of Lovász on color critical hypergraphs.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mikko Pelto

Graph Theory International audience Let G=(V,E) be a simple undirected graph. We call any subset C⊆V an identifying code if the sets I(v)={c∈C | {v,c}∈E or v=c } are distinct and non-empty for all vertices v∈V. A graph is called twin-free if there is an identifying code in the graph. The identifying code with minimum size in a twin-free graph G is called the optimal identifying code and the size of such a code is denoted by γ(G). Let GS denote the induced subgraph of G where the vertex set S⊂V is deleted. We provide a tight upper bound for γ(GS)-γ(G) when both graphs are twin-free and |V| is large enough with respect to |S|. Moreover, we prove tight upper bound when G is a bipartite graph and |S|=1.


1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Andrzej Proskurowski ◽  
Jan Arne Telle

International audience We introduce q-proper interval graphs as interval graphs with interval models in which no interval is properly contained in more than q other intervals, and also provide a forbidden induced subgraph characterization of this class of graphs. We initiate a graph-theoretic study of subgraphs of q-proper interval graphs with maximum clique size k+1 and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter q to vary from 0 to k, we obtain a nested hierarchy of graph families, from graphs of bandwidth at most k to graphs of pathwidth at most k. Allowing both parameters to vary, we have an infinite lattice of graph classes ordered by containment.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Anthony Bonato ◽  
Jeannette Janssen

International audience We study infinite limits of graphs generated by the duplication model for biological networks. We prove that with probability 1, the sole nontrivial connected component of the limits is unique up to isomorphism. We describe certain infinite deterministic graphs which arise naturally from the model. We characterize the isomorphism type and induced subgraph structure of these infinite graphs using the notion of dismantlability from the theory of vertex pursuit games, and graph homomorphisms.


1970 ◽  
Vol 43 (4) ◽  
pp. 833-836 ◽  
Author(s):  
G. Chimonas

A statically stable, gravitationally stratified compressible fluid containing a parallel shear flow is examined for stability against infinitesimal adiabatic perturbations. It is found that the Miles–Howard theorem of incompressible fluids may be generalized to this system, so that n2 ≥ ¼U′2 throughout the flow is a sufficient condition for stability. Here n2 is the Brunt–Väissälä frequency and U’ is the vertical gradient of the flow speed. Howard's upper bound on the growth rate of an unstable mode also generalizes to this compressible system.


2019 ◽  
Vol 29 (2) ◽  
pp. 190-199
Author(s):  
Omer Angel ◽  
Abbas Mehrabian ◽  
Yuval Peres

AbstarctFor a rumour spreading protocol, the spread time is defined as the first time everyone learns the rumour. We compare the synchronous push&pull rumour spreading protocol with its asynchronous variant, and show that for any n-vertex graph and any starting vertex, the ratio between their expected spread times is bounded by $O({n^{1/3}}{\log ^{2/3}}n)$. This improves the $O(\sqrt n)$ upper bound of Giakkoupis, Nazari and Woelfel (2016). Our bound is tight up to a factor of O(log n), as illustrated by the string of diamonds graph. We also show that if, for a pair α, β of real numbers, there exist infinitely many graphs for which the two spread times are nα and nβ in expectation, then $0 \le \alpha \le 1$ and $\alpha \le \beta \le {1 \over 3} + {2 \over 3} \alpha $; and we show each such pair α, β is achievable.


Author(s):  
P. Gochhayat ◽  
A. Prajapati ◽  
A. K. Sahoo

A typical quandary in geometric functions theory is to study a functional composed of amalgamations of the coefficients of the pristine function. Conventionally, there is a parameter over which the extremal value of the functional is needed. The present paper deals with consequential functional of this type. By making use of Hohlov operator, a new subclass [Formula: see text] of analytic functions defined in the open unit disk is introduced. For both real and complex parameter, the sharp bounds for the Fekete–Szegö problems are found. An attempt has also been taken to found the sharp upper bound to the second and third Hankel determinant for functions belonging to this class. All the extremal functions are express in term of Gauss hypergeometric function and convolution. Finally, the sufficient condition for functions to be in [Formula: see text] is derived. Relevant connections of the new results with well-known ones are pointed out.


Author(s):  
P. Komjáth

A transversal for a set-system is a one-to-one choice function. A necessary and sufficient condition for the existence of a transversal in the case of finite sets was given by P. Hall (see [4, 3]). The corresponding condition for the case when countably many countable sets are given was conjectured by Nash-Williams and later proved by Damerell and Milner [2]. B. Bollobás and N. Varopoulos stated and proved the following measure theoretic counterpart of Hall's theorem: if (X, μ) is an atomless measure space, ℋ = {Hi: i∈I} is a family of measurable sets with finite measure, λi (i∈I) are non-negative real numbers, then we can choose a subset Ti ⊆ Hi with μ(Ti) = λi and μ(Ti ∩ Ti′) = 0 (i ≠ i′) if and only if μ({U Hi: iεJ}) ≥ Σ{λi: iεJ}: for every finite subset J of I. In this note we generalize this result giving a necessary and sufficient condition for the case when I is countable and X is the union of countably many sets of finite measure.


Sign in / Sign up

Export Citation Format

Share Document