scholarly journals A Study of Physio-Chemical Properties of Healthy and Declined Nagpur Mandarin Orchards

Author(s):  
Prashant Joshi ◽  
Dhiraj Kadam ◽  
Shakti Tayde ◽  
Yogesh Dharmik

The present investigation was carried out to characterize and classify some typical healthy and declined Nagpur mandarin gardens in Warud and Morshi Tahsil’s of Amravati District (M.S.). Total forty two representative surface and depth soil samples from healthy and declined Nagpur mandarin gardens were collected and analyzed for various physico-chemical properties. The findings revealed that the texture of soil is clayey (40 - 59 % clay in healthy gardens and 47.4 - 61.4 % clay in declined gardens). The bulk density and porosity in healthy gardens ranged 1.51 - 1.67 mg.m-3, 35.85 - 43.02 % in declined gardens; it varied from 1.51 to 1.66 mg.m-3 and 25.85 to 43.02 % respectively. The pH, organic carbon and CaCO3 content in healthy gardens soils varies 7.5 - 8.0, 4.8 - 9.0 g kg-1, 5.35 - 8.31 % and in declined gardens it’s 7.7 - 8.2, 1.95 - 3.75 gm kg-1, 6.71 - 10.53 % respectively. The electrical conductivity and cation exchange capacity of healthy gardens soil was noticed 0.21 - 0.28 d.Sm-1, 45.92 - 55.53 c.mol (p+) kg ha-1 and in declined gardens it varied 0.22 - 0.32 d.Sm-1, 46.20 - 51.92 c.mol (p+) kg ha-1 respectively. Further, no significant difference was found in clay, bulk density, porosity, electrical conductivity and cation exchange capacity in healthy and declined gardens; however soil reaction was found high in declined gardens than healthy gardens. Organic carbon content was high and free lime content was reported lower in healthy gardens than declined gardens. Study on depth wise distribution showed that bulk density, pH and electrical conductivity increase with soil depth. Organic carbon and cation exchange capacity decreases with soil depth. The available nitrogen, phosphorus and potassium content of healthy gardens surface soils are ranged 206.0 - 273.7 kg ha-1, 25.0 - 38.3 kg ha-1, 324 - 672 kg ha-1 and in declined gardens it’s varied as 135.4 - 206.8 kg ha-1, 19.8 - 23.3 kg ha-1, 364 - 750.4 kg ha-1 respectively. Available nitrogen and phosphorus content in healthy gardens found more supporting than declined ones. Depth wise distribution showed that available nitrogen and phosphorus showed decreasing trend with the soil depth.

2021 ◽  
Vol 23 (3) ◽  
pp. 368-374
Author(s):  
A. BASUMATARY ◽  

Two hundred fifty geo-referenced surfaces (0-15 cm) soil samples were collected and analysed for macronutrients and micronutrients to study fertility status in soils of Dima Hasao district of Assam and their relationship with some important soil properties. Soils of the district were found to be extremely acidic to slightly acidic in reaction with a low to high organic carbon content and low in cation exchange capacity. The soil of the district indicated that the available nitrogen, phosphorus and potassium status was observed to the tune of 14.0 %,7.2% and 67.2% under low and 86.0 %, 92.8 % and 32.8 %under medium categories, respectively. The overall percent deficient of exchangeable calcium, magnesium and available sulphur in soils was 25.6, 30.4 and 6.8 %, respectively. Based on critical limit, all soils were adequately supplied with DTPA-extractable Fe, Mn and Cu content. In respect of zinc and boron, soils exhibited 90.4 and 73 per cent under sufficient, while, 2.4 and 12 per cent were found deficient in DTPA -Zn and HWS-B, respectively. Soil pH and EC showed positive correlation with macro nutrients and negative correlation with micronutrients. The macro- and micronutrient showed significant positive relation with soil organic carbon and cation exchange capacity.


Author(s):  
Nsengimana Venuste

Different tree speciesare blamed to have negative effects on soil ecosystems by changing soil physicochemical properties, and hence soil quality. However, few researches to verify this statement were done in Rwanda. This study provides prior information on the effects of planted forest tree species on soil physicochemical properties. It was conducted in the Arboretum of Ruhande, in southern Rwanda. Soil cores were collected in plots of exotic, native and agroforestry tree species. Collected soils were analysed for soil pH, total nitrogen, organic carbon, available phosphorus,  aggregate stability, bulk density, soil humidity, cation exchange capacity, and soil texture. Soils sampled under exotic tree species were acidic, richin soil organic carbon, and in soil available phosphorus. Native and agroforestry tree species offer better conditions in soil pH, soil water content, cation exchange capacity, clay and silt. Less variations in soil total nitrogen and soil bulk density were found in soils sampled under all studied forest types. Research concluded that studiedtree species have different effects on soil physicochemical parameters. It recommended further studies to generalize these findings. Key words: soil, exotic, native, agroforestry, soil properties


HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Ty A. McClellan ◽  
Roch E. Gaussoin ◽  
Robert C. Shearman ◽  
Charles S. Wortmann ◽  
Martha Mamo ◽  
...  

Nutrient and chemical changes in turfgrass sand-based root zones are not well understood. This study was conducted to characterize nutrient and chemical properties in putting greens influenced by root zone mixture and establishment treatment, putting green age, and soil depth. Putting greens were constructed and established with Agrostis stolonifera L. in sequential years from 1997 to 2000. Treatments included root zone mixtures of 80:20 (v:v) sand and sphagnum peat and 80:15:5 (v:v:v) sand, sphagnum peat, and soil, and accelerated versus controlled establishment. In the establishment year, the accelerated treatment received 2.6-, 3.0-, and 2.6-fold more nitrogen, phosphorus, and potassium, respectively, than the controlled treatment. Soil samples were taken in Fall 2001, Spring 2004, and Summer 2004 and were analyzed for nutrient and chemical properties such as pH, cation exchange capacity (CEC), organic matter (OM), total soluble salts (TSS), and 12 nutrients. The root zone mixture and establishment treatments had minimal effects on most nutrient and chemical properties with the exception of phosphorus and pH. Cation exchange capacity, OM, TSS, and all nutrients decreased with soil depth, whereas soil pH increased. The putting green age × soil depth interaction was significant for many of the nutrient and chemical properties, but separating soil samples into mat and original root zone instead of predetermined soil sampling depths eliminated most of these interactions. The mat layer had higher CEC and OM values and nutrient concentrations and lower pH values than the original root zone mixture.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


Author(s):  
Md. Rafiqul Islam ◽  
Golam Kibria Muhammad Mustafizur Rahman ◽  
Md. Abu Saleque

A laboratory experiment was conducted in Soil Science Division of Bangladesh Rice Research Institute (BRRI) during 2010-11 aimed to determine the effects of different industrial effluents on some soil chemical properties under long-term industrial wastewater irrigated rice field. Effluents irrigation created some differences in soil pH, electrical conductivity and organic carbon. The pH in all soil depth was higher with wastewater irrigated rice field. Irrigation with wastewater increased in all the effluents irrigated rice fields; the electrical conductivity (EC) was remarkable higher with  all soil depth than the control field. In all the rice fields soil (Control + effluents irrigated fields), the organic carbon content (%) started to decrease sharply with the increase in soil depth. Organic carbon content was slightly higher with wastewater irrigated rice soils. Exchangeable cations (Ca, Mg, K and Na), trace elements (Zn, Fe, Mn and Cu) and heavy metals (Pb, Cd, Cr and Ni) were increased through irrigation with wastewater in rice–rice cropping pattern.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Martin Leue ◽  
Daniel Uteau ◽  
Stephan Peth ◽  
Steffen Beck‐Broichsitter ◽  
Horst H. Gerke

CATENA ◽  
2018 ◽  
Vol 167 ◽  
pp. 327-339 ◽  
Author(s):  
Magboul Sulieman ◽  
Ibrahim Saeed ◽  
Abdalhaleem Hassaballa ◽  
Jesús Rodrigo-Comino

Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 3015
Author(s):  
Fethi Kooli ◽  
Souad Rakass ◽  
Yan Liu ◽  
Mostafa Abboudi ◽  
Hicham Oudghiri Hassani ◽  
...  

The effect of the counteranion of hexadecyltrimethylammonium salts on the physico-chemical properties of organoclays was investigated, using a selected natural clay mineral with a cation exchange capacity of 95 meq/100 g. The uptake amount of C16 cations was dependent on the hexadecyltrimethylammonium (C16) salt solution used, the organoclay prepared from C16Br salt solution exhibited a value of 1. 05 mmole/g higher than those prepared from C16Cl and C16OH salt solutions. The basal spacing of these organoclays was in the range of 1.81 nm to 2.10 nm, indicating a similar orientation of the intercalated surfactants, and could indicated that the excess amount of surfactants, above the cation exchange capacity of 0.95 meq/g could be adsorbed on the external surface of the clay mineral sheets. These organoclays were found to be stable in neutral, acidic, and basic media. The thermal stability of these organoclays was carried out using thermogravimetric analysis and in-situ X-ray diffraction (XRD) techniques. The decomposition of the surfactant occurred at a maximum temperature of 240 °C, accompanied with a decrease of the basal spacing value close to 1.42 nm. The application of these organoclays was investigated to remove an acidic dye, eosin. The removal amount was related to the initial used concentrations, the amount of the surfactants contents, and to the preheated temperatures of the organoclays. The removal was found to be endothermic process with a maximum amount of 55 mg of eosin/g of organoclay. The value decreased to 25 mg/g, when the intercalated surfactants were decomposed. The reuse of these organoclays was limited to four regeneration recycles with a reduction of 20 to 30%. However, noticeable reduction between 35% to 50% of the initial efficiency, was achieved after the fifth cycle, depending of the used organoclays.


1999 ◽  
Vol 79 (3) ◽  
pp. 501-504 ◽  
Author(s):  
B. J. Zebarth ◽  
G. H. Neilsen ◽  
E. Hogue ◽  
D. Neilsen

Sandy, infertile soils can benefit from the addition of organic waste amendments. Annual applications of organic wastes for as long as 4 yr increased soil organic matter content, decreased soil bulk density, and increased soil water retention of a coarse-textured soil. However, soil water-holding capacity was not necessarily increased, and there was a limited effect on soil cation exchange capacity. Key words: Cation exchange capacity, water retention, soil pH, soil organic matter, soil bulk density


Sign in / Sign up

Export Citation Format

Share Document