scholarly journals Gender Stereotypes and STEAM Education

Author(s):  

Then we talk about gender stereotypes in Steam education we can find in the societal mentality: „Girls don´t find STEAM interesting” „Boys are more capable for STEAM”, „Boys are oriented to achievements, girls to feelings and society”. This paper presents the results of sensitive gender workshops, to provide illustrations of stereotypes as an input for the creation of value-added content with gender awareness and continue sensitizing teachers about gender stereotypes in approach to learning that uses Science, Technology, Engineering, the Arts and Mathematics in education

ANCIENT LAND ◽  
2021 ◽  
Vol 03 (03) ◽  
pp. 47-49
Author(s):  
Nərgiz Nazim qızı Əhlimanova ◽  

STEAM Education is an approach to learning that uses Science, Technology, Engineering, the Arts and Mathematics as access points for guiding student inquiry, dialogue, and critical thinking. Use of STEAM lessons in teaching process, increased critical thinking, improved student achievement and help to development of personality formation. This article discusses the advantage of the STEAM methods and shown that an example of a STEAM-based chemistry lesson model. Key words: STEAM education,critical thinking, science, technology, engineering, teaching of chemistry, chemical experiment


2021 ◽  
pp. 146394912110514
Author(s):  
Sofie Areljung ◽  
Anna Günther-Hanssen

STEAM (science, technology, engineering, arts and mathematics) education is currently gaining ground in many parts of the world, particularly in higher stages of the educational system. Foreseeing a development of STEAM policy and research also in the early years, this colloquium seeks to bring questions of gendering processes to the table. The authors aspire to prevent the development of a gender-blind STEAM discourse for early childhood education. Instead, they encourage practitioners and researchers to make use of STEAM education to recognise and transcend gendered norms connected to children’s being and learning in the arts, STEM and STEAM.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401880410 ◽  
Author(s):  
Han-Jong Kim ◽  
Yunwoo Jeong ◽  
Ju-Whan Kim ◽  
Tek-Jin Nam

Recently, the demand for designing mechanism-embedded artifacts has increased in personal digital fabrication. However, it is difficult for nonexperts without engineering knowledge to design and build a prototype with a kinetic mechanism. We present M.Sketch, a prototyping tool that helps nonexperts to design and build linkage-based kinetic mechanisms. It enables the user to easily configure the linkage-based mechanism with a simple interface applying a geometry drawing metaphor. The tool features computational support, including interactive visualization, top-down optimization, and connection to digital fabrication, to obtain and build the desired movement. In order to support science–art integrated science, technology, engineering, the arts, and mathematics (STEAM) education related to digital fabrication of interactive artifacts, we deployed M.Sketch in design workshops and student contests of walking robot design. The participants in the contests were able to successfully design and build walking robots with the Theo-Jansen mechanism using various support features of M.Sketch. Based on the development and deployment in science, technology, engineering, the arts, and mathematics educational domains, we figured out several implications, and further improvement points of prototyping tools supporting nonexperts in designing mechanism-embedded interactive artifacts.


2022 ◽  
pp. 175-196
Author(s):  
Marja Bertrand ◽  
Immaculate Kizito Namukasa

Globally, computational thinking and coding in schools has become more popular as well as a growing area of interest in education reform. Coupling coding with creative thinking promises to meaningfully engage students in their learning and to improve their coding and computational thinking skills. This prompts discussions about STEAM (Science, Technology, Engineering, Arts, and Mathematics), which promotes creativity and innovation through the integration of the arts in STEM subjects. This study addresses the following question: What mathematics and computational thinking do students learn through different models of STEAM education in non-profit and in-school contexts? A small sample was taken of four different STEAM programs in Ontario, Canada. We carried out a qualitative case study with 103 participants, 19 adults and 84 students. The findings from this study have implications for designing, implementing and researching K-8 STEAM programs that promote coding and computational thinking skills in the context of learning mathematics.


2019 ◽  
Vol 116 (6) ◽  
pp. 1865-1869 ◽  
Author(s):  
David Skorton

The nature of work is changing rapidly in the digital age, increasing the demand for skills in specific disciplines. Across the United States and beyond, this evolution has led to an increased emphasis on science, technology, engineering, and mathematics (STEM) education at every level. Meanwhile, at US institutions of higher education, the proportion of undergraduate students who earn a degree in the humanities is declining. However, while the public discussion often pits the disciplines against one another, the sciences, arts, and humanities are—as Albert Einstein once wrote—“branches of the same tree” [(2006)The Einstein Reader]. They are mutually reinforcing. Therefore, the best way to prepare the next generation for the future of work, life, and citizenship is to provide broad, holistic educational experiences that integrate the STEM disciplines with the arts and humanities. A new study from the Board on Higher Education and Workforce of the National Academies of Sciences, Engineering, and Medicine bolsters the case for such an approach, finding considerable evidence that the mutual integration of disciplines leads to improved educational and career outcomes for undergraduate and graduate students.


2019 ◽  
Vol 9 (3) ◽  
pp. 184 ◽  
Author(s):  
Meng-Leong How ◽  
Wei Loong David Hung

In science, technology, engineering, arts, and mathematics (STEAM) education, artificial intelligence (AI) analytics are useful as educational scaffolds to educe (draw out) the students’ AI-Thinking skills in the form of AI-assisted human-centric reasoning for the development of knowledge and competencies. This paper demonstrates how STEAM learners, rather than computer scientists, can use AI to predictively simulate how concrete mixture inputs might affect the output of compressive strength under different conditions (e.g., lack of water and/or cement, or different concrete compressive strengths required for art creations). To help STEAM learners envision how AI can assist them in human-centric reasoning, two AI-based approaches will be illustrated: first, a Naïve Bayes approach for supervised machine-learning of the dataset, which assumes no direct relations between the mixture components; and second, a semi-supervised Bayesian approach to machine-learn the same dataset for possible relations between the mixture components. These AI-based approaches enable controlled experiments to be conducted in-silico, where selected parameters could be held constant, while others could be changed to simulate hypothetical “what-if” scenarios. In applying AI to think discursively, AI-Thinking can be educed from the STEAM learners, thereby improving their AI literacy, which in turn enables them to ask better questions to solve problems.


2020 ◽  
Vol 18 (3) ◽  
pp. 183-188
Author(s):  
V. Prezhdarova ◽  
D. Pastarmadzhieva

The online world offers a huge number of opportunities and variety of information sources, which differ significantly from each other. To high extent the online world is the place, where youth spend most of their time. In such situation the creative and critical thinking are essential to help youth integrate and develop their individuality in the digital world. Furthermore, the interdisciplinary nature of digital art serves to develop creativity and critical thinking. In this way, they create new knowledge, which forms the necessary qualities for faster socialization in the virtual society. Thus, digital art merges with STEAM education, where science and art are integrated, namely Science, Technology, Engineering, Arts and Mathematics. The purpose of the current study is to identify the possible impact of STEAM education on the formation of the creative and critical thinking among young people. The authors use various methods such as analysis of the content, historical and comparative approach. The results show that the digital art and STEAM education can give the youth knowledge about how the technology is created and then express themselves through the art, which leads us to the conclusion that the indeed can support the creative and critical thinking.


Author(s):  
Jessica Sandoval-Palomares ◽  
Heraclio García-Cervantes ◽  
Alan David Blanco-Miranda ◽  
Didia Carillo-Hernández

Science, technology and innovation are elements to respond to the challenges that must be faced, such as, among others, climate change, renewable energies, the nutrition of humanity, health and the administration of resources. Currently, women have a low percentage of representation in science, technology, engineering and mathematics majors, STEM, for its acronym in English; the gender gap persists in the labor issue, where companies are required to allow women to enter leadership positions. The ONU, to respond to this evident disparity, in 2015 establishes an international day to recognize the important role it has in science and technology, which is proclaimed on February 11 as International Day of Women and Girls in the Science. This research analyzes the perception of women who were trained in STEM careers, with the purpose of knowing their perception in six aspects, namely; Perception of their academic training, ability to learn and solve problems in STEM areas, social, educational or family support, academic training, satisfaction in their work and the work environment, gender stereotypes and the analysis of the skills or competencies required.


2018 ◽  
Vol 10 (3) ◽  
pp. 46-57 ◽  
Author(s):  
Jin-Ok Kim ◽  
Jinsoo Kim

This article aims at developing an art-based STEAM educational program that would help elementary school students to develop their abilities to solve scientific problems and artistic sensibilities by using an educational robot. In addition, this article investigates whether the program could be applied in the field. In order to achieve the purpose of this article, ‘mobile' and ‘abstraction' were selected as the subjects of the activities and the STEAM educational program which allowed students to learn knowledge regarding science, technology and mathematics in a comprehensive manner through the course in order to experience and create works of art. Also, the level of satisfaction and effectiveness were confirmed by applying the program to the class targeting students in the 4th and 6th grades.


Sign in / Sign up

Export Citation Format

Share Document