scholarly journals Use of 3D technology in underground tourism: example of Rzeszow (Poland) and Lviv (Ukraine)

2021 ◽  
pp. 205-221

During the COVID-19 pandemic, human mobility has been limited all over the world. People started to take advantage of computer technology to compensate for the lack of possibility of leaving their homes. Virtual travel, which can be conducted in many different ways, has become one of the ways of using this technology. Therefore, analyses have been carried out to investigate the possibility of applying 3D technology to promote underground tourist attractions. The Underground Tourist Route in Rzeszow (Poland) and the underground of the Old City Hall in Lviv (Ukraine) were selected as the research objects. They were inventoried with the terrestrial laser scanning (TLS) method and with the application of the Faro Focus 3D laser scanner. Then films demonstrating virtual tour around the inventoried objects were created based on the clouds of points obtained during the measurements. As a part of the research, it was verified whether these methods could encourage people to visit the researched objects more than their standard advertisements presented on the Internet. The evaluation was performed with the use of a semantic differentiation test. The survey research carried out for this purpose was implemented using the CAWI technique. The questionnaires were available for the respondents from the last week of April 2020 to the first week of July 2020. The size of the researched group accounted for 393 people. The respondents came from 23 countries on 5 continents. The obtained results confirm that the use of 3D technology in the promotion of tourist attractions may be a good decision.

Author(s):  
Vokulova Yu.A. Vokulova ◽  
E.N. Zhulev

This article presents the results of studying the dimensional accuracy of the bases of complete removable prostheses made using a 3D printer and the traditional method. Bases of complete removable prostheses were made using an intraoral laser scanner iTero Cadent (USA) and a 3D printer Asiga Max UV (Australia). To study the dimensional accuracy of the bases of complete removable prostheses, we used the DentalCAD 2.2 Valletta software. The Nonparametric Wilcoxon W-test was used for statistical analysis of the obtained data. We found that the average value of the difference with the standard for bases made using digital technologies is 0.08744±0.0484 mm. The average value of the difference with the standard for bases made by the traditional method is 0.5654±0.1611 mm. Based on these data, we concluded that the bases of complete removable prostheses made using modern digital technologies (intraoral laser scanning and 3D printer) have a higher dimensional accuracy compared to the bases of complete removable prostheses made using the traditional method with a significance level of p<0.05 (Wilcoxon's W-test=0, p=0.031). Keywords: digital technologies in dentistry, digital impressions, intraoral scanner, 3D printing, ExoCAD, complete removable dentures.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


Author(s):  
Mike Jones ◽  
David J. Nelmes

Alstom Power is executing the steam turbine retrofit of six nuclear units for Exelon Generation in the USA. The existing turbine-generators are an 1800 RPM General Electric design originally rated at 912 MWe and 1098 MWe and powered by Boiling Water Reactors. 18 Low Pressure inner modules will be replaced, with the first due to be installed in March 2010. This project is particularly challenging — the aggressive retrofit installation schedule is compounded by the requirement to handle radioactively contaminated equipment and also comply with demanding regulations applicable to BWR plant. The author’s company has extensive experience in the steam turbine retrofit business, having supplied around 800 retrofit cylinders globally since the 1970’s. However, this LP upgrade challenges the established techniques used in the business and requires extraordinary effort. Traditional retrofit engineering and installation principles have been interrogated and developed to meet the specific requirements of this project. Innovative techniques are introduced, including the extensive use of the Leica HDS 6000 laser scanner to model the existing plant. The approach has advanced the field of steam turbine retrofit design and installation significantly. The first section of this paper focuses on the extraordinary considerations of the project and the challenges surrounding BWR plant. The second part describes the laser scanning technique and the application of scan data. It outlines the innovative solutions which have been developed.


2021 ◽  
Vol 13 (1) ◽  
pp. 690-704
Author(s):  
Lichun Sui ◽  
Jianfeng Zhu ◽  
Mianqing Zhong ◽  
Xue Wang ◽  
Junmei Kang

Abstract Various means of extracting road boundary from mobile laser scanning data based on vehicle trajectories have been investigated. Independent of positioning and navigation data, this study estimated the scanner ground track from the spatial distribution of the point cloud as an indicator of road location. We defined a typical edge block consisting of multiple continuous upward fluctuating points by abrupt changes in elevation, upward slope, and road horizontal slope. Subsequently, such edge blocks were searched for on both sides of the estimated track. A pseudo-mileage spacing map was constructed to reflect the variation in spacing between the track and edge blocks over distance, within which road boundary points were detected using a simple linear tracking model. Experimental results demonstrate that the ground trajectory of the extracted scanner forms a smooth and continuous string just on the road; this can serve as the basis for defining edge block and road boundary tracking algorithms. The defined edge block has been experimentally verified as highly accurate and strongly noise resistant, while the boundary tracking algorithm is simple, fast, and independent of the road boundary model used. The correct detection rate of the road boundary in two experimental data is more than 99.2%.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 520 ◽  
Author(s):  
Yingjie Yan ◽  
Mingpeng Xia ◽  
Shaohui Fan ◽  
Meichun Zhan ◽  
Fengying Guan

The growth of individual trees in a forest is affected by many factors, a crucial one being the intensity of competition among trees, because it affects the spatial structure of the forest and is in turn influenced by silvicultural practices. In a mixed forest in particular, the growth of trees is affected by multiple interactions. To analyse the competition between moso bamboo (Phyllostachys pubescens (Pradelle) Mazel ex J.Houz.) and broad-leaved trees in a mixed forest, data were extracted by sampling six spots within such a forest using terrestrial laser scanning (TLS). The convex hull algorithm was used for calculating the overlap volume between the crowns of the broad-leaved trees and the bamboo canopy. Bamboos growing at least 3 m away from any of the broad-leaved trees were the most numerous and the diameter at breast height (DBH) is larger than those growing closer than that, which suggests that broad-leaved trees suppressed the growth of bamboo if they are closer but promote it beyond 3 m up to a point at which the distance is too great for any such effect. The modified Hegyi’s competition index was constructed based on the canopy factor, which may better describe the competitive interaction among the trees and bamboos. Using TLS can enhance our understanding of the competition among trees in mixed forests and help in planning the spatial structure of such forests in general and provide a benchmark for choosing planting distances in particular.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3347 ◽  
Author(s):  
Zhishuang Yang ◽  
Bo Tan ◽  
Huikun Pei ◽  
Wanshou Jiang

The classification of point clouds is a basic task in airborne laser scanning (ALS) point cloud processing. It is quite a challenge when facing complex observed scenes and irregular point distributions. In order to reduce the computational burden of the point-based classification method and improve the classification accuracy, we present a segmentation and multi-scale convolutional neural network-based classification method. Firstly, a three-step region-growing segmentation method was proposed to reduce both under-segmentation and over-segmentation. Then, a feature image generation method was used to transform the 3D neighborhood features of a point into a 2D image. Finally, feature images were treated as the input of a multi-scale convolutional neural network for training and testing tasks. In order to obtain performance comparisons with existing approaches, we evaluated our framework using the International Society for Photogrammetry and Remote Sensing Working Groups II/4 (ISPRS WG II/4) 3D labeling benchmark tests. The experiment result, which achieved 84.9% overall accuracy and 69.2% of average F1 scores, has a satisfactory performance over all participating approaches analyzed.


2018 ◽  
Vol 72 (3) ◽  
pp. 741-758 ◽  
Author(s):  
W.I. Liu ◽  
Zhixiong Li ◽  
Zhichao Zhang

A Laser Scanning aided Inertial Navigation System (LSINS) is able to provide highly accurate position and attitude information by aggregating laser scanning and inertial measurements under the assumption that the rigid transformation between sensors is known. However, a LSINS is inevitably subject to biased estimation and filtering divergence errors due to inconsistent state estimations between the inertial measurement unit and the laser scanner. To bridge this gap, this paper presents a novel integration algorithm for LSINS to reduce the inconsistences between different sensors. In this new integration algorithm, the Radial Basis Function Neural Networks (RBFNN) and Singular Value Decomposition Unscented Kalman Filter (SVDUKF) are used together to avoid inconsistent state estimations. Optimal error estimation in the LSINS integration process is achieved to reduce the biased estimation and filtering divergence errors through the error state and measurement error model built by the proposed method. Experimental tests were conducted to evaluate the navigation performance of the proposed method in Global Navigation Satellite System (GNSS)-denied environments. The navigation results demonstrate that the relationship between the laser scanner coordinates and the inertial sensor coordinates can be established to reduce sensor measurement inconsistencies, and LSINS position accuracy can be improved by 23·6% using the proposed integration method compared with the popular Extended Kalman Filter (EKF) algorithm.


Author(s):  
J.-F. Hullo

We propose a complete methodology for the fine registration and referencing of kilo-station networks of terrestrial laser scanner data currently used for many valuable purposes such as 3D as-built reconstruction of Building Information Models (BIM) or industrial asbuilt mock-ups. This comprehensive target-based process aims to achieve the global tolerance below a few centimetres across a 3D network including more than 1,000 laser stations spread over 10 floors. This procedure is particularly valuable for 3D networks of indoor congested environments. In situ, the use of terrestrial laser scanners, the layout of the targets and the set-up of a topographic control network should comply with the expert methods specific to surveyors. Using parametric and reduced Gauss-Helmert models, the network is expressed as a set of functional constraints with a related stochastic model. During the post-processing phase inspired by geodesy methods, a robust cost function is minimised. At the scale of such a data set, the complexity of the 3D network is beyond comprehension. The surveyor, even an expert, must be supported, in his analysis, by digital and visual indicators. In addition to the standard indicators used for the adjustment methods, including Baarda’s reliability, we introduce spectral analysis tools of graph theory for identifying different types of errors or a lack of robustness of the system as well as <i>in fine</i> documenting the quality of the registration.


Author(s):  
M. Lo Brutto ◽  
E. Iuculano ◽  
P. Lo Giudice

Abstract. The preservation of historic buildings can often be particularly difficult due to the lack of detailed information about architectural features, construction details, etc.. However, in recent years considerable technological innovation in the field of Architecture, Engineering, and Construction (AEC) has been achieved by the Building Information Modeling (BIM) process. BIM was developed as a methodology used mainly for new construction but, given its considerable potential, this approach can also be successfully used for existing buildings, especially for buildings of historical and architectural value. In this case, it is more properly referred to as Historic – or Heritage – Building Information Modeling (HBIM). In the HBIM process, it is essential to precede the parametric modeling phase of the building with a detailed 3D survey that allows the acquisition of all geometric information. This methodology, called Scan-to-BIM, involves the use of 3D survey techniques for the production of point clouds as a geometric “database” for parametric modeling. The Scan-to-BIM approach can have several issues relating to the complexity of the survey. The work aims to apply the Scan-to-BIM approach to the survey and modeling of a historical and architectural valuable building to test a survey method, based on integrating different techniques (topography, photogrammetry and laser scanning), that improves the data acquisition phase. The “Real Cantina Borbonica” (Cellar of Royal House of Bourbon) in Partinico (Sicily, Italy) was chosen as a case study. The work has allowed achieving the HBIM of the “Real Cantina Borbonica” and testing an approach based exclusively on a topographic constraint to merge in the same reference system all the survey data (laser scanner and photogrammetric point clouds).


Sign in / Sign up

Export Citation Format

Share Document