scholarly journals Analysis of Mixing Used Oil with Solar As Fuel Against Smoke Thickness in Diesel Motors

Author(s):  
Iffarial Nanda ◽  
Martias Martias ◽  
Toto Sugiarto

Effect of the precision of smoke of diesel motor vehicles by utilizing used oil mixed with diesel fuel. The purpose of this study is to know the mix up to what percentage of used oil that can be used as fuel to the precision of diesel motor fume in accordance with the limits of regulation of the Ministry of Environment No. 05 of 2016. For testing of Smoke thickness using gauge opacity smokemeter, used is used oil 5% mixed with solar 95%, used oil 10% mixed diesel 90%, used oil 15% mixed with diesel 85%, used oil 20% mixed 80% solar, used oil 40% mixed diesel 60%, oil used 60% mixed 40% solar, 80% used oil mixed with 20% diesel, and 100% used oil. at acceleration engine speed Acceleration is done three times on each sample and then compare for each samples tested. From result of research can be concluded that semekin big percentage of mixing of used oil hence influence to smoke thickness in Isuzu Panther diesel motor. The used oil mixture of 5% to 40% of the resulting smoke thickness is still within the threshold of the exhaust emissions in accordance with Regulation of the Ministry of Environment No. 5 of 2006 which is smoke thickness below 70%.

Author(s):  
Bagus Lutfiwijaya ◽  
Akhmad Syarief ◽  
Sigit Mujiarto

Used hydraulic oil SAE 10 is a waste activities that are often found in Indonesia, especially in mining and plantantion scale hydraulic large. Waste used oil SAE 10 can be used as a fuel mixture of hydrocarbons is done by mixing the used oil hydraulic SAE 10 with other fuels such as gasoline, kerosene, diesel fuel with the addition of a maximum percentage of less than 50%. this research tries to investigate exhaust emissions on diesel engines with hydraulic mixing used oil into diesel fuel with a mixture of different variations. The machine used is a four-stroke diesel engine with a maximum power of 4.4 kW. Be based testing has been done variations of a mixture of 5% and 10 % is still within the allowed limits.


2020 ◽  
Vol 13 (1) ◽  
pp. 1-5
Author(s):  
Budiyono Budiyono

There are two methods to reduce exhaust emissions in a motorized vehicle, namely by improving fuel and motorbike technology in such a way that better combustion occurs and produces lower emissions and by the addition of exhaust emission control devices or devices. Catalytic Converter is a device used as an exhaust gas emission control that is placed after the exhaust manifold on a motor vehicle exhaust system. The purpose of this study was to determine how the influence of the use of catalytic converters of brass material to reduce CO and HC gas levels in motor vehicles. Tests carried out using a gas analyzer to determine the value of CO and HC concentrations. Exhaust gas testing is carried out in two stages, namely exhaust emission test with standard exhaust and exhaust emission test with catalytic converter with variations of engine speed 1500 rpm, 2000 rpm, 2500 rpm, 3000 rpm, 3500 rpm, 4000 rpm. From the results of the study it was found that the influence of the use of catalytic converters of brass with a thickness of 0.3 mm with the fin model experienced a decrease in the level of exhaust gas emissions most effectively at 1500 rpm engine speed ie CO value decreased 1.82% from 3.96% to 2.14% and HC values ​​decreased by 4,412 ppm from 9,999 ppm down to 5,587 ppm. So motor vehicles using a catalytic converter made of brass with a thickness of 0.3 mm will be able to reduce CO exhaust emissions by 2.14% and HC by 3.96%


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1046
Author(s):  
Maksymilian Mądziel ◽  
Tiziana Campisi ◽  
Artur Jaworski ◽  
Giovanni Tesoriere

Urban agglomerations close to road infrastructure are particularly exposed to harmful exhaust emissions from motor vehicles and this problem is exacerbated at road intersections. Roundabouts are one of the most popular intersection designs in recent years, making traffic flow smoother and safer, but especially at peak times they are subject to numerous stop-and-go operations by vehicles, which increase the dispersion of emissions with high particulate matter rates. The study focused on a specific area of the city of Rzeszow in Poland. This country is characterized by the current composition of vehicle fleets connected to combustion engine vehicles. The measurement of the concentration of particulate matter (PM2.5 and PM10) by means of a preliminary survey campaign in the vicinity of the intersection made it possible to assess the impact of vehicle traffic on the dispersion of pollutants in the air. The present report presents some strategies to be implemented in the examined area considering a comparison of current and project scenarios characterized both by a modification of the road geometry (through the introduction of a turbo roundabout) and the composition of the vehicular flow with the forthcoming diffusion of electric vehicles. The study presents an exemplified methodology for comparing scenarios aimed at optimizing strategic choices for the local administration and also shows the benefits of an increased electric fleet. By processing the data with specific tools and comparing the scenarios, it was found that a conversion of 25% of the motor vehicles to electric vehicles in the current fleet has reduced the concentration of PM10 by about 30% along the ring road, has led to a significant reduction in the length of particulate concentration of the motorway, and it has also led to a significant reduction in the length of the particulate concentration for the access roads to the intersection.


1982 ◽  
Author(s):  
David L. Hilden ◽  
Stephen P. Bergin ◽  
Harvey A. Burley ◽  
Ronald D. Tharby ◽  
Ian P. Fisher

Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


2020 ◽  
Vol 19 (3) ◽  
pp. 473-484
Author(s):  
Mina Tadros ◽  
Manuel Ventura ◽  
C. Guedes Soares

Abstract Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines. This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions. From that point, an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used. The variations of SOx emissions are computed in g/kW·h and in parts per million (ppm) as functions of the optimized parameters: brake specific fuel consumption and the amount of air-fuel ratio respectively. Then, a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load. These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
I. M. Yusri ◽  
M. K. Akasyah ◽  
R. Mamat ◽  
O. M. Ali

The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number as compared to other alternatives fuel. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using multi-cylinder, 4-stroke engine with common rail direct injection system to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar. Based on the results Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.


Sign in / Sign up

Export Citation Format

Share Document