scholarly journals Surface Quality Comparison of Down and Up cut Technique on CNC Milling Machine toward ST-37 Steel Material

Author(s):  
Eko Indrawan ◽  
Yufrizal A ◽  
Rifelino Rifelino ◽  
Rahmad Fajri Ula Agus Herianto

The purpose of this research is comparing down and up cut technique on milling process toward ST-37 steel material by using HSS Ø12 mm end mill cutter. The surface roughness result of down cut technique is achieved Ra 2.39 μm which is equivalent to N7 roughness level at lowest cutting speed 20 m/mnt. Moreover, the highest roughness Ra 3.61 μm obtained at highest cutting speed 30 m/mnt which is equivalent to N8 roughness level. While, the quality of up cut technique yield the roughnes Ra 3.94 μm, equivalent to N8 roughness level at lowest cutting speed 20 m/minute, whilst, Ra 6.01 μm that equivalent to N9 roughness level on highest cutting speed condition 30 m/minute. The surface roughnes value achieved between N7-N9 level (ISO). Down cut technique is recommended in order to achieve good surface quality, because it could be generate lower surface roughness on material. Tujuan dari penelitian ini adalah membandingkan teknik down cut dan up cut pada proses freis terhadap material baja ST-37 dengan menggunakan end mill cutter diameter Ø12 mm. Hasil kekasaran permukaan dari teknik down cut adalah Ra 2,39 μm yang setara dengan level kekasaran N7 pada kecepatan potong terendah 20 m/mnt. Selanjutnya, kekasaran tertinggi Ra 3,61 μm diperoleh pada kecepatan potong tertiggi 30 m/mnt yang setara dengan level kekasaran N8. Sementara itu, kualitas teknik up cut menghasilkan kekasaran Ra 3,94 μm yang setara dengan level kekasaran N8 pada kecepatan potong terendah 20 m/mnt, sedangkan Ra 6,01 μm yang setara dengan level N9 pada kecepatan potong tertinggi 30 m/mnt. Harga kekasaran permukaan material diperoleh di antara level N7-N9 (nomor kekasaran ISO). Teknik down cut direkomendasikan untuk memperoleh kualitas permukaan yang baik, karena teknik ini dapat menghasilkan kekasaran permukaan yang lebih rendah pada benda kerja.

Author(s):  
Chetan Darshan ◽  
Lakhvir Singh ◽  
APS Sethi

Manufacturers around the globe persistently looking for the cheapest and quality manufactured machined components to compete in the market. Good surface quality is desired for the proper functioning of the produced parts. The surface quality is influenced by cutting speed, feed rate and depth of cut and many other parameters. In the present study attempt has been made to evaluate the performance of ceramic inserts during hard turning of EN-31 steel. The analysis of variance is applied to study the effect of cutting speed, feed rate and depth of cut on Flank wear and surface roughness. Model is found to be statically significant using regression model, while feed and depth of cut are the factor affecting Flank wear and feed is dominating factors for surface roughness. The analysis of variance was used to analyze the input parameters and there interactions during machining. The developed model predicted response factor at 95% confidence level.


2018 ◽  
Vol 153 ◽  
pp. 05005
Author(s):  
Hani Mizhir ◽  
Kamil Jawad ◽  
Zuhair H Obaid

One of the important goals of this research is to predict a relationship between the process input parameters and resultants from surface roughness features through developing a laser cutting model. In most engineering applications, natural sciences and computing; statistical methods, which are one of mathematical branch are widely used for investigating the results. Laser cutting process of stainless steel (2205) is a machining process selected for this study. The technique which adopted here is a response surface methodology (RSM). The main portion for this study is the influence of cutting speed on surface quality. To study the model response, and for statistical approach with further prediction; a mathematical based model has been developed through regression analysis. It’s found that as one of the important results in this research, that cutting speed and surface roughness has a significant rule on the model response. To produce a good surface roughness, it’s approved that the high cutting speed connected with high power regardless of high pressure has a high influence on surface quality.


2011 ◽  
Vol 486 ◽  
pp. 91-94 ◽  
Author(s):  
Jabbar Abbas ◽  
Amin Al-Habaibeh ◽  
Dai Zhong Su

Surface roughness is one of the most significant parameters to determine quality of machined parts. Surface roughness is defined as a group of irregular waves in the surface, measured in micrometers (μm). Many investigations have been performed to verify the relationship between surface roughness and cutting parameters such as cutting speed, feed rate and depth of cut. To predict the surface produced by end milling, surface roughness models have been developed in this paper using the machining forces by assuming the end mill cutter as a cantilever beam rigidly or semi- rigidly supported by tool holder. An Aluminium workpiece and solid carbide end mill tools are used in this work. Model to predict surface roughness has been developed. Close relationship between machined surface roughness and roughness predicted using the measured forces signals.


2015 ◽  
Vol 22 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Erol Kiliçkap ◽  
Ahmet Yardimeden ◽  
Yahya Hışman Çelik

AbstractCarbon fiber-reinforced plastic (CFRP) composites are materials that are difficult to machine due to the anisotropic and heterogeneous properties of the material and poor surface quality, which can be seen during the machining process. The machining of these materials causes delamination and surface roughness owing to excessive cutting forces. This causes the material not to be used. The reduction of damage and surface roughness is an important aspect for product quality. Therefore, the experimental study carried out on milling of CFRP composite material is of great importance. End milling tests were performed at CNC milling vertical machining center. In the experiments, parameters considered for the end milling of CFRP were cutting speed, feed rate, and flute number of end mill. The results showed that damage, surface roughness, and cutting forces were affected by cutting parameters and flute number of end mill. The best machining conditions were achieved at low feed rate and four-flute end mill.


2018 ◽  
Vol 14 (3) ◽  
pp. 123-128
Author(s):  
Rasha Ramiz Alyas

Milling Machining is a widely accepted nontraditional machining technique used to produce parts with complex shapes and configurations. The material is removed in two stages roughing and finishing, the flat end cutter removed the unwanted part of material, then finished by end mill cutter. In milling technique, the role of machining factors such as cutting depth, spindle speed and feed has been studied using Taguchi technique to find its effectiveness on surface roughness.  Practical procedure is done by Taguchi Standard matrix. CNC milling is the most conventional process which is used for removing of material from workpiece to perform the needed shapes. The results and relations indicate that the rate of feed is very important factor for modeling surface roughness. The plot of S/N ratio shows that the optimum combination of the milling factors that gives the best value of surface accuracy. The best combination of milling factors has also been predicted to minimize the surface roughness.


2016 ◽  
Vol 836 ◽  
pp. 191-196
Author(s):  
Agus Sujatmiko ◽  
Moh Hartono ◽  
R. Edy Purwanto

Computer Numerical Control (CNC) vertical milling is a cutting tool of a work piece by giving CNC G-code program to the milling machine to give the chisel end mill perpendicular to the surface of the work piece. The distance between overhang tool and holder is usually not standard causing the end mill chisel experience minimum and maximum deflection during the cutting process. This research observed the cutting and measuring the surface roughness of the specimen made of BJ37 mild steel. It is of a square shape with a rectangular cross-section cutting parameters of overhang groove, vibration and feeding from the left, the middle, and the right surface. Measurement was done by testing the surface roughness under the conditions of changing the overhang groove, vibration, and small feeding. The observations result in smaller deflection and angle to obtain Ra = 1.64 μm average minimum level of roughness using 25mm overhang with the same feeding of 0.18mm/rev. Ra = 1.64 μm is classified into Group N7 smooth, compared to the use standard 35mm overhang which obtains Ra = 1.88 μm, Group N7 normal. The minimum level of roughness can be obtained due to the smaller feeding.


2013 ◽  
Vol 315 ◽  
pp. 841-845
Author(s):  
Noor Hakim Rafai ◽  
Mohd Hilmi Othman ◽  
Sulaiman Hasan ◽  
Tharmaah Rao A/L Sinnasalam

This research is an approach to investigate the effect of cutting condition on surface roughness in dry and flood cutting of AISI 1030. The objectives of this project are to compare the plastic injection mould quality between dry and flood cutting condition, as well as to determine the best cutting condition. The parameters used were depth of cut (0.25mm, 0.5mm, and 1.0mm), feed rate (50mm/rev, 100mm/rev and 150mm/rev) and cutting speed (700m/min, 1400m/min and 2100m/min). Surface roughness value was used to determine to quality characteristic of the machined mould. The experiments were done using Mazak CNC milling machine and the material selected was AISI 1030, which is a medium tensile and low hardenability carbon steel. Twenty-seven runs were done in both dry and flood cutting, adapting Taguchi Method - Orthogonal Array. After each machining, the surface roughness was measured using Mitutoyo Surface Roughness Tester. The data obtained was then analyzed through Signal to Noise Ratio calculation. This analysis produced the best combination of parameters which gives the lowest surface roughness. The best combinations for dry cutting are 2100m/min for cutting speed, 50mm/rev for feed rate and 0.25mmfor depth of cut. As for flood cutting, the best combinations are 2100m/min for cutting speed, 50mm/rev for feed rate and 1.0mm for depth of cut. The surface roughness obtained using this parameter in dry cutting is 0.27Ám and 0.40Ám in flood cutting. From the comparison, it is proved that dry cutting produced lower surface roughness compared to flood cutting.


2011 ◽  
Vol 87 ◽  
pp. 82-89
Author(s):  
Potejanasak Potejana ◽  
Chakthong Thongchattu

This research proposes a new application of 3-axis CNC milling machine for polishing the 60 HRC hardness steels. The rotary polishing tools are designed by refer to the end-mill ball nose’s design. The diamond powder are coated in rotary polishing tools by resinoid bonding method and concentrated in 4.4 karat/cm2. The Zig-milling tool paths are used to polish the hardness steel. After polishing, the confocal laser scanning microscope is used to analyze the arithmetic mean surface roughness of the hardness steels. The L12 orthogonal array of the Taguchi’s method is selected to conduct the matrix experiment to determine the optimal polishing process parameters. The diamond grit size and cutting speed of the rotary polishing tools, feed rate and step over of the tool path, the depth of polishing process penetration, and polishing time are used to study. The combination of the optimal level for each factor of the hardness steel polishing process are used to study again in the confirmation experiment. The predicted signal to noise ratio of smaller - the better under optimal condition are calculated by using the data from the experiment. The combination of the optimal level for each factor are used to study again in the confirmation experiment and the result show that polishing time was a dominant parameter for the surface roughness and the next was depth of penetration. The response surface design is then used to build the relationship between the input parameters and output responses. The experimental results show that the integrated approach does indeed find the optimal parameters that result in very good output responses in the rotary polishing tools polished hardness mould steel using CNC milling machine. The mean surface roughness of hardness steel polishing process is improved by the diamond rotary tools with the 3-axis CNC milling machine.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


Author(s):  
Hirohisa Narita

Abstract An optimum experimental condition, which realize good surface roughness in cross direction both contour and scanning lines, for radius end mill against some inclined surfaces is obtained and some features is these cutting processes is discussed in this paper. The optimum experimental condition, which consists of cutting type (or feed direction), spindle speed, feed rate, depth of immersion, inclination angle, corner radius of end mill and cross feed, is obtained and the influence degree of these parameters is calculated by using Taguchi method. The experiment is carried out based on L18 orthogonal array. Based on the influence degree and geometric contact status due to unique shape of radius end mill, some feature of radius end milling is introduced. As a result of the contour line machining, a scallop height is very influenced by the inclination angle and the corner radius, and surface machined by bottom edge must not be remained. Regarding the scanning line machining, “go-up” is good for the feed direction. Big corner radius is also suitable because side edge does not contact to workpiece. In other words, the cutting force in radial direction becomes small. Furthermore, the surface roughness of the scanning line machining is smaller than the one of the contour line machining.


Sign in / Sign up

Export Citation Format

Share Document