scholarly journals Connectivity Investigation of Channel Quality-Based Adaptive Gossip Flooding Mechanism for AODV

Author(s):  
Prasanna Shete ◽  
Raval N Awale

To address the “broadcast storm” problem associated with flooding-based route discovery mechanism of reactive routing protocols, probabilistic approaches are suggested in the literature. In the earlier work, Gossip flooding mechanism of Haas et.al. was extended with signal quality, to propose channel quality based adaptive gossip flooding mechanism for AODV (CQAG-AODV). Following the cross-layer design principle, CQAG-AODV algorithm tried to discover robust routes, as well as address the “broadcast storm” problem by controlling the rebroadcast probability of Route request (RREQ) packets on the basis of signal strength experienced at the physical layer. This paper investigates the connectivity of CQAG-AODV through theoretical and simulation analysis. Results show that, by accounting the signal strength in the route discovery process, not only does the proposed algorithm floods  a lesser number of route requests and controls the broadcast storm, but also maintains a higher level of connectivity to offer high packet delivery ratio; independent of network density and node mobility. Moreover, due to controlled routing overhead and robust route discovery, channel quality based adaptive flooding mechanism offers fringe benefit of energy efficiency as well. CQAG-AODV thus proves its suitability in a variety of use cases of multi-hop ad hoc networks including WSNs and VANETs.

2020 ◽  
Vol 14 ◽  
Author(s):  
S. Mahima ◽  
N. Rajendran

: Mobile ad hoc networks (MANET) hold a set of numerous mobile computing devices useful for communication with one another with no centralized control. Due to the inherent features of MANET such as dynamic topology, constrained on bandwidth, energy and computing resources, there is a need to design the routing protocols efficiently. Flooding is a directive for managing traffic since it makes use of only chosen nodes for transmitting data from one node to another. This paper intends to develop a new Cluster-Based Flooding using Fuzzy Logic Scheme (CBF2S). To construct clusters and choose proper cluster heads (CHs), thefuzzy logic approach is applied with the use of three parameters namely link quality, node mobility and node degree. The presented model considerably minimizes the number of retransmissions in the network. The presented model instructs the cluster members (CM) floods the packets inside a cluster called intra-cluster flooding and CHs floods the packets among the clusters called inter-cluster flooding. In addition, the gateway sends a packet to another gateway for minimizing unwanted data retransmissions when it comes under different CH. The presented CBF2S is simulated using NS2 tool under the presence of varying hop count. The CBF2S model exhibits maximum results over the other methods interms of overhead, communication overhead, traffic load, packet delivery ratio and the end to end delay.


Author(s):  
TEJAL ARVIND SONAWALE ◽  
SHIKHA NEMA

Ad Hoc Networks face a lot of problems due to issues like mobility, power level, load of the network, bandwidth constraints, dynamic topology which lead to link breaks, node break down and increase in overhead. As nodes are changing their position consistently, routes are rapidly being disturbed, thereby generating route errors and new route discoveries. The need for mobility awareness is widely proclaimed. In our dissertation we present a scheme AOMDV-APLP that makes AOMDV aware of accessibility of neighbor nodes in the network. Nodes acquire the accessibility information of other nodes through routine routing operations and keep in their routing table. Based on this information route discovery is restricted to only “accessible” and “start” nodes. Further route with the strongest signal strength is selected from multiple routes using Link life value predicted by Link Breakage prediction technique. Simulation result shows that using accessibility and link life knowledge in route discovery process MAC overhead, routing overhead and average delay is reduced 3 times, and improve the Packet delivery ratio to a large extent than standard AOMDV which reflects effective use of network resources.


Author(s):  
Alaa Azmi Allahham ◽  
Muamer Mohammed ◽  
Nassir Sallom Kadhim

<p class="Abstract">Mobile Ad-hoc Networks (MANETs) involved in many applications, whether smart or traditional and for both civilian and military uses, and that because of their special features, where it does not depend on any infrastructure during its working, as well as the nodes in MANETs have a freedom of movement with the ability to self-configure, in addition, to working as a router or client at the same time. Moreover, MANETs considered as an infrastructure less network, so the cost of this type of networks is less in comparison to other traditional networks. On the other hand, the routing considered one of most important challenges in MANETs due to the  perpetual motion and randomness of the nodes that can causing a continuous change of the network topology and thus to all paths between nodes, where finding valid paths between the nodes is the core task of routing protocols. Recently, it has been argued that the traditional layered architecture is ineffective to deal with receiving signal strength related problems. In an effort to improve the performance of MANETs, there has been increased in protocols that rely on cross-layer interaction between different layers. In this paper, a Cross-layer design among Network, MAC and Physical layers based on Threshold Multipath Routing Protocol (CTMRP) is proposed. The CTMRP is designed for decision maker based on threshold value of average paths signal for efficient transmission of the Text, image, audio and video as well as sending the data via multiple paths, which mitigate the negatives effects causes from forcing the nodes to send the data via single. The Route Discovery Delay, Number of RREQ Messages, Number of RREP Messages, End-to-End Delay, Packet Delivery Ratio (PDR), and Throughput were selected as the main performance evaluation metrics. The results show that the proposed algorithm has better performance and lead to increase stability of transmission link.</p>


Author(s):  
Pramita Mitra ◽  
Christian Poellabauer

The presence of asymmetric links is a common and non-negligible phenomenon in many ad-hoc networks, including MANETs and sensor networks. Asymmetry is caused by node mobility, heterogeneous radio technologies, and irregularities in radio ranges and packet loss patterns. Most existing ad-hoc routing protocols either assume fully symmetric networks or simply ignore any asymmetric links. In the first case, route discovery can fail when the symmetry assumption does not hold true, e.g., many reactive routing protocols rely on a two-phase communication process, where the same path is used to communicate between a sender and a receiver. If a single link on this path is asymmetric, the route establishment may fail. In the second case, asymmetric links are identified and explicitly ignored in the route establishment phase. This can lead to route discovery failure if there is no symmetric path between a sender and a receiver or it can lead to less than optimal routes. This document provides an overview of routing protocols that explicitly consider asymmetric links in the route discovery phase and introduces robust mechanisms that bypass asymmetric links to ensure successful route establishment.


Author(s):  
Vivek Sharma ◽  
Bashir Alam ◽  
M. N. Doja

In mobile ad hoc wireless networks (MANETs), traditional protocol like AODV performs well for low mobility of nodes but not for high node mobility. So, it becomes important to consider mobility factor during the path selection procedure of routing protocol. Here, a fuzzy logic mobility based protocol (FLM-AODV) that considers the mobility factor is proposed. Due to the consideration of mobility factor, the proposed protocol has better performance than the traditional AODV. The experiment results show that the proposed protocol has advantages of improved average end-to-end delay and packet delivery ratio (PDR) over existing AODV protocol.


A mobile ad-hoc network (MANET) is an infrastructure-less network of wireless nodes. The network topology may change quickly with respect to time, due to node mobility. The network is a disintegrated network, activities such as delivering messages by determining the topology essential to be implemented by the nodes themselves i.e., the routing activity will be unified into mobile nodes. Due to the lack of centralized administration in multihop routing and open environment, MANET’s are susceptible to attacks by compromised nodes; hence, to provide security also energy efficiency is a crucial issue. So as to decrease the hazards of malicious nodes and resolve energy consumption issues, a simple confidence-based protocol is built to evaluate neighbor’s behaviour using forwarding factors. The reactive Ad-hoc on-demand multipath distance vector routing protocol (AOMDV), is extended and confidence-based Ad-hoc on-demand distance vector (CBAOMDV) protocol, is implemented for MANET. This implemented protocol is able to find multiple routes in one route discovery. These routes are calculated by confidence values and hop counts. From there, the shortest path is selected which fulfills the requirements of data packets for reliability on confidence. Several experimentations have been directed to relate AOMDV and CBAOMDV protocols and the outcomes show that CBAOMDV advances throughput, packet delivery ratio, normalized routing load, and average energy consumption.


Author(s):  
Lalit Tripathi ◽  
Kanojia Sindhuben

MANET (Mobile ad hoc networks) is a collection of wireless mobile nodes dynamically forming an infrastructure less network. Several routing protocols are designed for routing of packets in MANET. One of them is AODV (Ad hoc on demand Distance Vector) protocol whose performance is better for higher mobile nodes. It is more vulnerable to black hole attack by the malicious node. Black hole attack is a network layer attack in MANET that tries to hamper the routing process. During route discovery phase it sends false reply to the nodes and dropped data packets. In this paper, first we have implemented black hole attack in AODV and then analyzed the impact of black hole attack under deferent metrics like throughput, packet delivery ratio and packet loss. Simulator NS-2.35 is used for implementation and result analysis.


Author(s):  
P. SRINIVASAN ◽  
K. KAMALAKKANNAN

Frequent changes in network topology and confined battery capacity of the mobile devices are the main challenges for routing in ad-hoc networks. In this paper, we propose a novel, Signal strength and Energy Aware routing protocol (SEA-DSR), which directly incorporates signal strength and residual battery capacity of nodes into route selection through cross layer approach. This model defines a metric called Reliability Factor for route selection among the feasible routes. It is simulated using ns2, under different mobility conditions. The simulation results shows better performance in terms of packet delivery ratio, control overhead and average end-end delay. The proposed model has extended the time to network partition and reduce the path breakages when compared with similar routing protocols DSR and SSA.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Sumet Prabhavat ◽  
Worrawat Narongkhachavana ◽  
Thananop Thongthavorn ◽  
Chanakan Phankaew

Mobile Opportunistic Networks (OppNets) are infrastructure-less networks consisting of wireless mobile nodes and have been a focus of research for years. OppNets can be scaled up to support rapid growth of wireless devices and technologies, especially smartphones and tablets. Mobile Ad Hoc Networks (MANETs), one of OppNets technologies, have a high potential to be used for facilitating an extension for the Internet and a backup communication platform in disaster situation. However, a connection disruption due to node mobility and unreliable wireless links is possible to trigger a flooding operation of route repair process. This results in transmission delay and packet loss. The flooding of routing packets is an expensive operation cost in MANETs which affects network reliability and wastes limited resources such as network bandwidth and node energy. These are obstacles to practical implementation of MANETs in real-world environment. In this paper, we propose Low Overhead Localized Flooding (LOLF), an efficient overhead reduction routing extension based on Query Localization (QL) routing protocol. The purpose of this work is to control the propagation of routing packets in the route discovery and route repair mechanisms while incurring only a small increase in the size of control information in the packet. Simulation results from extensive experiments show that our proposed method can reduce overall routing overhead, energy consumption, and end-to-end delay without sacrificing the packet delivery ratio compared to existing protocols.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1129
Author(s):  
Dimitris Kanellopoulos ◽  
Varun Kumar Sharma

Mobile ad hoc networks (MANETs) possess numerous and unique characteristics, such as high channel error-rate, severe link-layer contentions, frequent link breakage (due to node mobility), and dissimilar path properties (e.g., bandwidth, delay, and loss rate) that make these networks different from the traditional ones. These characteristics seriously interfere with communication and hence, ultimately degrade the overall performance in terms of end-to-end delay, packet delivery ratio, network throughput, and network overhead. The traditional referenced layered strict architecture is not capable of dealing with MANET characteristics. Along with this, the most important apprehension in the intent of MANETs is the battery-power consumption, which relies on non-renewable sources of energy. Even though improvements in battery design have not yet reached that great a level, the majority of the routing protocols have not emphasized energy consumption at all. Such a challenging aspect has gained remarkable attention from the researchers, which inspired us to accomplish an extensive literature survey on power-aware optimization approaches in MANETs. This survey comprehensively covers power-aware state-of-the-art schemes for each suggested group, major findings, crucial structures, advantages, and design challenges. In this survey, we assess the suggested power-aware policies in the past in every aspect so that, in the future, other researchers can find new potential research directions.


Sign in / Sign up

Export Citation Format

Share Document