scholarly journals THE APPLICATION OF PASSIVE DESIGN STRATEGIES AS SUSTAINABLE OPERATION AND MAINTENANCE IN A MODEL CONFERENCE CENTRES (A CASE STUDY OF AMINU KANO CENTRE FOR DEMOCRATIC RESEARCH AND TRAINING (AKCDR&T))

Author(s):  
Alfa Sharif ◽  
Muhammad Mukarram ◽  
Isyaku Rabi’u ◽  
Rabi’u Inusa

ABSTRACT: This research sought to reduce uncomfortable conditions created by extremes of heat and dryness in order to achieve well balanced indoor and outdoor climate, through the application of passive design strategies in Conference Centre located in hot dry climate of Kano Nigeria. Passive design utilizes natural sources of heating and cooling breezes. It is achieved by appropriately orientating the building on its site and carefully designing the building envelope (roof, walls, windows and floor). External features such as fountain, soft landscaping and proper site planning improves micro climate which in turn helped in achieving good passive design. The methodology employed is case study and relevant information sourced from pertinent literature and the internet was taken into consideration. Research has shown that more than40% of energy consumption in any building is used for cooling and lighting in order to achieve comfort level. In the course of the research, the building was studied to evaluate the use of passive elements that relates to passive lighting and cooling which are the main source of energy consumption such as building envelop, natural lighting, natural ventilation, Site and external spaces, building form, building orientation, wall/window shading and existing of energy source on conference centre building. Research has shown that, the design parameters obtained from field survey are the principal factors responsible for any good passive design of most public building such as conference centre building.

2019 ◽  
Vol 11 (22) ◽  
pp. 6471 ◽  
Author(s):  
Rui ◽  
Zhang ◽  
Shi ◽  
Pan ◽  
Chen ◽  
...  

Despite their high energy consumption, rural residential houses in the hot summer and cold winter (HSCW) zone still have a generally poor indoor thermal environment. The objective of this study was to understand the current status of the indoor thermal environment for rural residential houses in the HSCW zone and analyze its cause in order to develop some strategies for improvement through passive design of the building envelope. Face-to-face questionnaires and interviews, air-tightness testing, and temperature and humidity monitoring were conducted to understand the building envelope, energy consumption, and indoor thermal environment. Then, some passive design strategies were simulated, including the application of functional interior materials such as hygroscopic and phase change materials. An overall passive design for the building envelope can increase the room temperature by 3.6 °C, reduce the indoor relative humidity by 12% in the winter, and reduce the room temperature by 4.4 °C in the summer. In addition, the annual energy-saving rate can reach ~35%.


2019 ◽  
Vol 37 (3) ◽  
pp. 250-272 ◽  
Author(s):  
Nwakaego Chikaodinaka Onyenokporo ◽  
Ekele Thompson Ochedi

Purpose The purpose of this paper is to develop a set of affordable retrofit packages that can be applied to existing residential buildings in hot-humid regions to improve occupants’ thermal comfort and reduce energy consumption. Design/methodology/approach A critical review of relevant literature to identify passive design strategies for improving thermal comfort and reducing energy consumption in hot-humid climates with focus on the building envelope was conducted in addition to a simulation study of an existing building typology in study area. Findings There is enormous potential to reduce energy costs and improve thermal comfort through building retrofit packages which is a recent concept in developing countries, such as Nigeria. Analysing the results of the retrofit interventions using building energy simulation helped in developing affordable retrofit packages which had optimum effect in improving indoor comfort temperature to the neutral temperature specified for hot humid Nigeria and further down to 3°C less than that of the reference building used. The use of passive design strategies to retrofit the building might help homeowners reduce their annual energy consumption by up to 46.3 per cent just by improving the indoor thermal comfort. Originality/value In addition to improving thermal comfort and reducing energy consumption, this research identified affordable retrofit packages and considered its cost implications especially to low-income earners who form a larger population of Lagos, Nigeria, as this was not considered by many previous researchers.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6597
Author(s):  
Ahmet Bircan Atmaca ◽  
Gülay Zorer Gedik ◽  
Andreas Wagner

Mosques are quite different from other building types in terms of occupant type and usage schedule. For this reason, they should be evaluated differently from other building types in terms of thermal comfort and energy consumption. It is difficult and probably not even necessary to create homogeneous thermal comfort in mosques’ entire usage area, which has large volumes and various areas for different activities. Nevertheless, energy consumption should be at a minimum level. In order to ensure that mosques are minimally affected by outdoor climatic changes, the improvement of the properties of the building envelope should have the highest priority. These optimal properties of the building envelope have to be in line with thermal comfort in mosques. The proposed method will be a guide for designers and occupants in the design process of new mosques or the use of existing mosques. The effect of the thermal properties of the building envelope on energy consumption was investigated to ensure optimum energy consumption together with an acceptable thermal comfort level. For this purpose, a parametric simulation study of the mosques was conducted by varying optical and thermal properties of the building envelope for a temperature humid climate zone. The simulation results were analyzed and evaluated according to current standards, and an appropriate envelope was determined. The results show that thermal insulation improvements in the roof dome of buildings with a large volume contributed more to energy savings than in walls and foundations. The use of double or triple glazing in transparent areas is an issue that should be considered together with the solar energy gain factor. Additionally, an increasing thickness of thermal insulation in the building envelope contributed positively to energy savings. However, the energy savings rate decreased after a certain thickness. The proposed building envelope achieved a 33% energy savings compared to the base scenario.


2018 ◽  
Vol 7 (3) ◽  
pp. 1861
Author(s):  
Neveen Y. Azmy ◽  
Rania E. Ashmawy

Windows play a significant role as they largely influence the energy load. Although there are many studies on the energy-efficient windows design, there is still a lack in information about the mutual impact of windows’ size, position and orientation on the energy loads. In this paper, the effect of different window positions and orientations on the energy consumption in a typical room in an administrative building that is located in the hot climatic conditions of Cairo city, Egypt is considered. This case study has been modeled and analyzed to achieve good environmental performance for architectural space, as well as assessing its impact on the amount of natural lighting required by using the Energy Plus program. The study concludes that the WWR (Window Wall Ratio) 20% square north-oriented upper  opening consumes 25% lower energy than the rectangular 3:1 opening in the lower west-oriented façade. The upper openings are the highest in terms of light intensity, as they cover about 50% of the room area. The WWR 30% rectangular north-oriented upper 3:1 opening consumes 29% lower energy than the rectangular lower 3:1opening in the façade. Regarding light intensity, the upper openings are the best for natural lighting as the light covers more than 60% of the room area.                                                                                                                                                               


2019 ◽  
Vol 11 (19) ◽  
pp. 5538 ◽  
Author(s):  
Yun-Shang Chiou ◽  
Joan Stephanie Elizalde

The paper presents a comparative study of the climate responsive design strategies and indoor thermal performance of three vernacular houses in Guanshan Township of eastern Taiwan by building survey and instrument measurements. These houses are all about 80 years old. They are of Chinese style, Japanese style, and a mixture of both styles. All three houses are popular building types in the region. Key findings include: (1) Space buffer, thermal insulation, ground exposure, and natural ventilation are the key elements of climate responsive design strategies. (2) The climate responsive design strategies of the three buildings, while using similar building material, are not the same. They are strongly associated with the buildings’ cultural roots as well as the buildings’ use patterns. (3) The Chinese-style house is a heat rejecter. It is comfortable in spring and summer. The mixed-style house is a heat keeper. It is comfortable in winter and spring. The Japanese-style house is well-ventilated and has equal thermal comfort level at around 50% in all seasons. It is uncommon that vernacular buildings from different cultural traditions coexist in the same region. This study provides detail appraisals of their respective sustainable design strategies in hot and humid climate.


2011 ◽  
Vol 99-100 ◽  
pp. 624-627
Author(s):  
Chao Ying Liu

According to Xuanmei Yang and other scholars’ study, space heating and cooling together with water heating consist the majority of domestic energy consumption. This article analyzes the seven aspects of domestic energy consumption by heating or cooling. From the building envelope technology and low-carbon technology aspects, it provides numbers of feasible strategies to attain low-carbon residential design adapting to the energy consuming sources of the residential construction.


2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Maryam Qays Oleiwi ◽  
Mohd Farid Mohamed

Past years have witnessed the popularity of traditional Malay house as a common housing type in Malaysia. However, double-storey house has become one of the common types of low-rise housing in Malaysia. Several passive cooling strategies have been adopted to cope with the hot-humid climate of Malaysia. In this study, the thermal comfort of a double-storey house was examined when different passive cooling strategies that were adopted from traditional Malay houses were applied using IES-VE 2019 building simulation software. The simulation was conducted for various design strategies such as changing concrete roof tiles to clay roof tiles, adding two small openings to the attic, removing the ceiling between the upper floor and the attic, and extending the overhang by 50% of its length for all the four facades. All these strategies were tested and compared between full-day natural ventilation and without any ventilation. The thermal comfort of these strategies was graphically defined based on the operative temperature. These analyses revealed that protecting the building envelope by extending the overhang by 50% of its length for all the four facades could ensure the best thermal comfort is achieved compared to other selected strategies. Recommendations for further studies are also outlined in this paper.


2016 ◽  
Vol 11 (1) ◽  
pp. 38-70 ◽  
Author(s):  
Ashraf T. Syed ◽  
Adel A. Abdou

INTRODUCTION Recent development has seen a drastic increase in energy use trends in Saudi Arabian buildings leading to a demand for an effective course of action for energy conservation and production. A case study-based research initiative exploring near-zero energy potential in Saudi Arabia was undertaken. A 4-bedroom detached single-family faculty residence at King Fahd University of Petroleum and Minerals (KFUPM) representing common regional housing design trends was utilized. A base case simulation model of the house was developed and validated using short-term and real-time energy consumption data. Three sets of strategies: passive design strategies, representative codes and standards, and renewable technology were employed in the new design of the house. Passive strategies comprised a green roof, a ventilated wall system, a sloped roof, and insulation for thermal bridges. These alternatives helped reduce the annual energy consumption of the house by 17.2%. The most recent version of the International Energy Conservation Code (IECC 2012) was also incorporated along with ASHRAE Standard 62.2 for ventilation. The code and standard together reduced the annual energy consumption by 31.1%. Solar PV was then utilized to reduce grid utilization for the remainder of the house energy loads. This strategy provided 24.7% of the total energy consumed annually. A combination of strategies showed a 70.7% energy consumption reduction, thereby decreasing the energy index of the house from 162.9 to 47.7 kWh/m2/yr. The Zero Energy Building (ZEB) concepts and strategies utilized in this study demonstrate a socially responsible approach to achieving near-zero energy performance for an existing house.


Sign in / Sign up

Export Citation Format

Share Document