scholarly journals WITHOUT A CONFLICT MODEL OF ELECTRON

2019 ◽  
pp. 16-20
Author(s):  
Vasil Tchaban

The model of electron is offered with quark distribution of charge density and ”white hole” (on similarity of ”black hole” in gravitation) in a center. Such structure abolishes the crisis of electromagnetic mass, calculated on universal formula and on the impulse of the electromagnetic field. A model in order to please a classic electrodynamics keeps monolithic nature of elementary particle, and in order to please a quantum allows the separate charged zones to interpret as separate quarks. Coming from harmony of spheres of the separate charged zones, a white hole can be interpreted as white (neutral) quark conditionally in addition to three coloured. As after the electric radius re = 1.185246·10−15 m of white hole the laws of electricity do not operate, then the crisis of point charge is removed at the same time too, because of must be: r ≥ re.

2020 ◽  
Vol 5 (1) ◽  
pp. 57-75
Author(s):  
Wim Vegt

In this New Theory a “Single Harmonic Black Hole” (SHBH) has been considered to be the Gravitational-Electromagnetic Confinement of a Single Harmonic Electromagnetic Field Configuration in which a perfect equilibrium exists between the outward directed electromagnetic radiation pressure and the inward directed Electromagnetic-Gravitational Interaction force densities.    This frequency transformation is possible because of the combined Lorentz / Doppler-Effect transformation during the collapse (contraction) of the radiation when the Gravitational Electromagnetic Confinement has been formed (Implosion of Visible Light).  Within the scope of this article “Single Harmonic Black Hole” (SHBH) is considered to be any kind of 3-dimensional confined Single Harmonic Electromagnetic Energy. The inner structure of a “SHBH” has been based on a 3-dimensional isotropic equilibrium within the electromagnetic field configuration. This new theory will explain how electromagnetic fields (wave packages) demonstrate inertia, mass and momentum and which forces keep the wave packages together in a way that they can be measured like particles with their own specific mass and momentum. To understand what electromagnetic inertia and the corresponding electromagnetic mass, spin and electric charge is and how the anisotropy of electromagnetic mass, spin and electric charge can be explained and how it has to be defined, a New Theory about “Electromagnetic-Gravitational Interaction” has been developed. The “New Theory” has been based on the fundamental principle of “Perfect Equilibrium within the Universe” which has already been expressed by Newton’s three equations published in 1687 in “Philosophiae Naturalis Principia Mathematica. Newton’s Equations in 3 dimensions will be published in this article in an extension into 4 dimensions. Newton’s 4-dimensional law in the 3 spatial dimensions results in an improved version of the classical Maxwell Equations and Newton’s law in the 4th dimension (time) results in the quantum mechanical Schrödinger wave equation (at non-relativistic velocities) and the relativistic Dirac equation.


2018 ◽  
Vol 27 (03) ◽  
pp. 1850023 ◽  
Author(s):  
Pratik Tarafdar ◽  
Tapas K. Das

Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity [Formula: see text] with the Kerr parameter [Formula: see text]. The [Formula: see text]–[Formula: see text] relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the [Formula: see text]–[Formula: see text] relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.


Author(s):  
J. Pierrus

In 1905, when Einstein published his theory of special relativity, Maxwell’s work was already about forty years old. It is therefore both remarkable and ironic (recalling the old arguments about the aether being the ‘preferred’ reference frame for describing wave propagation) that classical electrodynamics turned out to be a relativistically correct theory. In this chapter, a range of questions in electromagnetism are considered as they relate to special relativity. In Questions 12.1–12.4 the behaviour of various physical quantities under Lorentz transformation is considered. This leads to the important concept of an invariant. Several of these are encountered, and used frequently throughout this chapter. Other topics considered include the transformationof E- and B-fields between inertial reference frames, the validity of Gauss’s law for an arbitrarily moving point charge (demonstrated numerically), the electromagnetic field tensor, Maxwell’s equations in covariant form and Larmor’s formula for a relativistic charge.


Author(s):  
Carlos A. R. Herdeiro ◽  
João M. S. Oliveira ◽  
Eugen Radu

AbstractRecently, no-go theorems for the existence of solitonic solutions in Einstein–Maxwell-scalar (EMS) models have been established (Herdeiro and Oliveira in Class Quantum Gravity 36(10):105015, 2019). Here we discuss how these theorems can be circumvented by a specific class of non-minimal coupling functions between a real, canonical scalar field and the electromagnetic field. When the non-minimal coupling function diverges in a specific way near the location of a point charge, it regularises all physical quantities yielding an everywhere regular, localised lump of energy. Such solutions are possible even in flat spacetime Maxwell-scalar models, wherein the model is fully integrable in the spherical sector, and exact solutions can be obtained, yielding an explicit mechanism to de-singularise the Coulomb field. Considering their gravitational backreaction, the corresponding (numerical) EMS solitons provide a simple example of self-gravitating, localised energy lumps.


1973 ◽  
Vol 28 (6) ◽  
pp. 907-910
Author(s):  
S. Datta Majumdar ◽  
G. P. Sastry

The electromagnetic field of a point charge moving uniformly in a uniaxial dispersive medium is studied in the rest frame of the charge. It is shown that the Fourier integral for the scalar potential breaks up into three integrals, two of which are formally identical to the isotropic integral and yield the ordinary and extraordinary cones. Using the convolution theorem of the Fourier transform, the third integral is reduced to an integral over the isotropic field. Dispersion is explicitly introduced into the problem and the isotropic field is evaluated on the basis of a simplified dispersion formula. The effect of dispersion on the field cone is studied as a function of the cut-off frequency.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050025 ◽  
Author(s):  
Mykola M. Stetsko

Scalar–tensor theory of gravity with nonlinear electromagnetic field, minimally coupled to gravity is considered and static black hole solutions are obtained. Namely, power-law and Born–Infeld nonlinear Lagrangians for the electromagnetic field are examined. Since the cosmological constant is taken into account, it allowed us to investigate the so-called topological black holes. Black hole thermodynamics is studied, in particular temperature of the black holes is calculated and examined and the first law of thermodynamics is obtained with help of Wald’s approach.


1997 ◽  
Vol 12 (26) ◽  
pp. 4769-4796 ◽  
Author(s):  
Luca Lusanna ◽  
Paolo Valtancoli

We search a canonical basis of Dirac's observables for the classical Abelian Higgs model with fermions in the case of a trivial U(1) principal bundle. The study of the Gauss law first class constraint shows that the model has two disjoint sectors of solutions associated with two physically different phases. In the electromagnetic phase, the electromagnetic field remains massless: after the determination of the Dirac's observables we get that both the reduced physical Hamiltonian and Lagrangian are nonlocal. In the Higgs phase, the electromagnetic field becomes massive and in terms of Dirac's observables we get a local, but nonanalytic in the electric charge (or equivalently in the sum of the electromagnetic mass and of the residual Higgs field), physical Hamiltonian; however the associated Lagrangian is nonlocal. Some comments on the R-gauge-fixing, the possible elimination of the residual Higgs field and on the Nielsen–Olesen vortex solution close the paper.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 178
Author(s):  
Kirill Bronnikov ◽  
Sergey Bolokhov ◽  
Milena Skvortsova

We discuss the properties of the previously constructed model of a Schwarzschild black hole interior where the singularity is replaced by a regular bounce, ultimately leading to a white hole. We assume that the black hole is young enough so that the Hawking radiation may be neglected. The model is semiclassical in nature and uses as a source of gravity the effective stress-energy tensor (SET) corresponding to vacuum polarization of quantum fields, and the minimum spherical radius is a few orders of magnitude larger than the Planck length, so that the effects of quantum gravity should still be negligible. We estimate the other quantum contributions to the effective SET, caused by a nontrivial topology of spatial sections and particle production from vacuum due to a nonstationary gravitational field and show that these contributions are negligibly small as compared to the SET due to vacuum polarization. The same is shown for such classical phenomena as accretion of different kinds of matter to the black hole and its further motion to the would-be singularity. Thus, in a clear sense, our model of a semiclassical bounce instead of a Schwarzschild singularity is stable under both quantum and classical perturbations.


Sign in / Sign up

Export Citation Format

Share Document