scholarly journals Pb-Bi mineralizace v amfibolitech z lomu Libodřice u Kolína (kutnohorské krystalinikum, Česká republika)

2021 ◽  
Vol 29 (1) ◽  
pp. 6-15 ◽  
Author(s):  
Zdeněk Dolníček ◽  
Jana Ulmanová

An interesting ore mineralization containing Pb-Bi minerals, present in a thin layer parallel with schistosity of the host amphibolite, was newly recognized in the Libodřice quarry near Kolín (Kutná Hora Crystalline Complex, Czech Republic). The disseminations of ore minerals are formed especially by pyrrhotite and chalcopyrite, less pyrite and accessory galena, native bismuth, cosalite, bismuthinite and joséite-B. The equilibrium textural relationships of rock-forming silicates and main sulphides indicate that the ore assemblage underwent metamorphic recrystallization together with the host rock, however, indications of younger local re-equilibrations under changed physico-chemical conditions (especially temperature, fugacity of sulphur, fugacity of oxygen) were also observed. The presence of polysynthetic lamellae in chalcopyrite suggests for its origin/re-crystallization at temperatures above 550 °C. Sporadic cosalite, stable at temperatures below 425 °C, was probably precursor of pseudomorphs today formed by galena and native bismuth. Pseudomorphs originated at temperatures below 271 °C probably due to local decrease of sulphur fugacity caused by growth of associated pyrrhotite. The local sulphurisation of small amount of native bismuth to bismuthinite and small part of pyrrhotite to pyrite finished the process of ore evolution. The presence of elevated contents of Te, Se and Ni in the studied mineralization confirms the source of these elements in the host rock environment, which was presupposed on the basis of earlier mineralogical study of Alpine-type veins in the area of the Kutná Hora Crystalline Complex.

2021 ◽  
Vol 29 (1) ◽  
pp. 90-107
Author(s):  
Zdeněk Dolníček ◽  
Jana Ulmanová ◽  
Karel Malý ◽  
Jaroslav Havlíček ◽  
Jiří Sejkora

In the Pohled quarry near Havlíčkův Brod town (central part of Czech Republic), texturally and mineralogically simple contaminated anatectic pegmatites form dikes or irregular bodies cementing breccia of host metamorphic rocks (paragneisses, amphibolites) belonging to the Monotonous (Ostrong) Group of the Moldanubicum of the Bohemian Massif. They exhibit signs of intense hydrothermal overprint and also the presence of abundant disseminations, nests and veinlets of ore minerals. A detailed mineralogical study revealed the presence of an extraordinary rich ore assemblage (20 species in total, including one unnamed phase). The oldest minerals are sphalerite (rich in Fe), löllingite, Fe-Co-Ni sulphoarsenides (cobaltite, glaucodot, arsenopyrite, gersdorffite), pyrrhotite, galena and chalcopyrite, in later portion accompanied by inclusions of Bi-minerals (native bismuth, bismuthinite, joséite-A, joséite-B, ikunolite and a Pb-Bi sulphosalt). The composition of the Pb-Bi sulphosalt is equal to Ag,Fe-substituted eclarite; its identity was confirmed also by Raman spectrum. Pyrite is very abundant phase, present probably in several generations. The Fe-Co-Ni thiospinels disseminated in younger chlorite, and represented by siegenite, violarite, grimmite and an unnamed NiFe2S4 phase, are the youngest ore minerals. The mineral association as well as chemical composition of most ore minerals are well comparable to those of local polymetallic ore veins and Alpine-type veins, which give evidence for identical origin of all these ore mineralizations. The formation of pegmatite-hosted ore assemblage was long-lasting multiphase process, which took place at temperatures between ca. 350 and <120 °C during changing fugacities of sulphur, tellurium and oxygen. A distinct enrichment in cobalt and nickel of ore mineralization hosted by pegmatites (in comparison with hydrothermal veins) is explained in terms of pronounced interactions of fluids with amphibolites and serpentinites.


Author(s):  
M. M. Kostenko ◽  
P. A. Kondratenko

The article shows the Verba ore mineralization of molybdenum (Volyn Block of the Ukrainian Shield) is associated with small granite intrusions. They are located in the south-eastern exocontact zone of the Ustynivka granite massif of the Paleoproterozoic Chisinau complex. The Verba minera­lization is a linear-coarse mineralized zone of the complex structure. This is confirmed by the development in its rocks of frequent, non-orientated veins of quartz, fluorite-quartz and carbonate-quartz compositions and numerous cracks. They have molybdenite and concomitant mineralization, as well as the wide spreading of molybdenite inclusions directly in the granites. A number of differently oriented faults and of small fracturing local zones, cataclasite, millonitized and breccias represents the internal structure of the mineralized zone. The characteristic of molybdenite the leading ore minerals is shown. It is morphologically represented by a closely connected scattered inclusions, rarely veined inclusions, and associated ore minerals: cassiterite, bismuth, native bismuth, emlectocytes, galena, sphalerite, chalcopyrite, pyrite, ilmenite, magnetite and titanomagnetite.


2020 ◽  
Vol 28 (2) ◽  
pp. 261-275
Author(s):  
Zdeněk Dolníček ◽  
Miroslav Nepejchal ◽  
Vlastimil Flášar ◽  
Jana Ulmanová

In the area north of Mladoňov, which is built by phyllites and quartzites of the Vrbno Group and granite-derived phyllonites of the Desná Group (Silesicum, northern part of the Bohemian Massif), there were found two types of hydrothermal ore mineralization in vein material sampled from remnants of old mining/prospection. The Cu(-Bi-Au) mineralization hosted by quartz gangue was found at the locality Husarčina šachta. A main ore mineral is chalcopyrite, which contains inclusions of pyrite, native bismuth, bismuthinite, a phase close to bismite, and native gold with fineness of 717 - 818. Baryte, recorded in part of collected samples, probably represents a significantly younger hypogene mineralization. Supergene minerals include malachite, azurite, a phase close to chrysocolla, bornite, Cu-sulphides, tenorite, native copper, limonite and probably also cuprite. A quartz-pyrite-pyrrhotite mineralization with accessory arsenopyrite and xenotime-(Y) and supergene limonite and baryte was recorded at localities Husarčina šachta and Kopka. Sporadically, Fe-sulphides contain elevated contents of Au (measurable by means of an electron microprobe), probably due to submicroscopic inclusions of native gold. Gold could be leached from wall rocks by ore fluids and/or remobilized from older mineralization to the younger one. The presence of traces of Cr, Co and Ni in some ore minerals implies for wider circulation of parent fluids involving probably also basic or ultrabasic rocks.


Mineralogia ◽  
2012 ◽  
Vol 43 (3-4) ◽  
pp. 199-212
Author(s):  
Łukasz Karwowski ◽  
Marek Markowiak

AbstractIn one small mineral vein in core from borehole 144-Ż in the Żarki-Kotowice area, almost all of the ore minerals known from related deposits in the vicinity occur. Some of the minerals in the vein described in this paper, namely, nickeline, hessite, native silver and minerals of the cobaltite-gersdorffite group, have not previously been reported from elsewhere in the Kraków-Lubliniec tectonic zone. The identified minerals are chalcopyrite, pyrite, marcasite, sphalerite, Co-rich pyrite, tennantite, tetrahedrite, bornite, galena, magnetite, hematite, cassiterite, pyrrhotite, wolframite (ferberite), scheelite, molybdenite, nickeline, minerals of the cobaltitegersdorffite group, carrollite, hessite and native silver. Moreover, native bismuth, bismuthinite, a Cu- and Ag-rich sulfosalt of Bi (cuprobismutite) and Ni-rich pyrite also occur in the vein. We suggest that, the ore mineralization from the borehole probably reflects post-magmatic hydrothermal activity related to an unseen granitic intrusion located under the Mesozoic sediments in the Żarki-Pilica area.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 371-374 ◽  
Author(s):  
S. Araki ◽  
J. M. González ◽  
E. de Luis ◽  
E. Bécares

The viability of Parascaris equorum eggs was studied in two experimental pilot-scale high-rate algal ponds (HRAPs) working in parallel with 4 and 10 days hydraulic retention time respectively. Semi-permeable bags of cellulose (15000 daltons pore size) were used to study the effect of physico-chemical conditions on the survival of these helminth eggs. Three thousand eggs were used in each bag. Replicates of these bags were submerged for 4 and 10 days in the HRAPs and egg viability was compared with that in control bags submerged in sterile water. After 4 days exposure, 60% reduction in viability was achieved, reaching 90% after 10 days, much higher than the 16% and 25% found in the control bags for 4 and 10 days respectively. Ionic conditions of the HRAP may have been responsible for up to 50–60% of the egg mortality, suggesting that mortality due to the ionic environment could be more important than physical retention and other potential removal factors.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Matteo Callegari ◽  
Elena Crotti ◽  
Marco Fusi ◽  
Ramona Marasco ◽  
Elena Gonella ◽  
...  

AbstractThe core gut microbiome of adult honeybee comprises a set of recurring bacterial phylotypes, accompanied by lineage-specific, variable, and less abundant environmental bacterial phylotypes. Several mutual interactions and functional services to the host, including the support provided for growth, hormonal signaling, and behavior, are attributed to the core and lineage-specific taxa. By contrast, the diversity and distribution of the minor environmental phylotypes and fungal members in the gut remain overlooked. In the present study, we hypothesized that the microbial components of forager honeybees (i.e., core bacteria, minor environmental phylotypes, and fungal members) are compartmentalized along the gut portions. The diversity and distribution of such three microbial components were investigated in the context of the physico-chemical conditions of different gut compartments. We observed that changes in the distribution and abundance of microbial components in the gut are consistently compartment-specific for all the three microbial components, indicating that the ecological and physiological interactions among the host and microbiome vary with changing physico-chemical and metabolic conditions of the gut.


2021 ◽  
Author(s):  
Patricia M. Glibert ◽  
Cynthia A. Heil ◽  
Christopher J. Madden ◽  
Stephen P. Kelly

AbstractThe availability of dissolved inorganic and organic nutrients and their transformations along the fresh to marine continuum are being modified by various natural and anthropogenic activities and climate-related changes. Subtropical central and eastern Florida Bay, located at the southern end of the Florida peninsula, is classically considered to have inorganic nutrient conditions that are in higher-than-Redfield ratio proportions, and high levels of organic and chemically-reduced forms of nitrogen. However, salinity, pH and nutrients, both organic and inorganic, change with changes in freshwater flows to the bay. Here, using a time series of water quality and physico-chemical conditions from 2009 to 2019, the impacts of distinct changes in managed flow, drought, El Niño-related increases in precipitation, and intensive storms and hurricanes are explored with respect to changes in water quality and resulting ecosystem effects, with a focus on understanding why picocyanobacterial blooms formed when they did. Drought produced hyper-salinity conditions that were associated with a seagrass die-off. Years later, increases in precipitation resulting from intensive storms and a hurricane were associated with high loads of organic nutrients, and declines in pH, likely due to high organic acid input and decaying organic matter, collectively leading to physiologically favorable conditions for growth of the picocyanobacterium, Synechococcus spp. These conditions, including very high concentrations of NH4+, were likely inhibiting for seagrass recovery and for growth of competing phytoplankton or their grazers. Given projected future climate conditions, and anticipated cycles of drought and intensive storms, the likelihood of future seagrass die-offs and picocyanobacterial blooms is high.


Sign in / Sign up

Export Citation Format

Share Document