scholarly journals The Effect of Collagen-Chitosan-Natrium Hyaluronate Composite on Expression of Vascular Endothelial Growth Factor (Vegf) Protein as Angiogenesis Reaction in Rabbit Corneal Stroma Wound (Experimental Study on Oryctolagus Cuniculus)

Author(s):  
Dr. Arantrinita ◽  
Reni Prastyani ◽  
Prihartini Widiyanti
2007 ◽  
Vol 35 (04) ◽  
pp. 713-723 ◽  
Author(s):  
Lei Dang ◽  
J. Paul Seale ◽  
Xianqin Qu

Increased endothelin-1 (ET-1), vascular endothelial growth factor (VEGF) and activation of protein kinase C (PKC) are co-contributors to endothelial hyperpermeability in diabetes. Several lines of evidence have suggested a hypothesis that activation of specific PKC isoforms are the causative factor in ET-1 and VEGF mediated endothelial dysfunction. In the present study, we tested this hypothesis with hypocrellin A, a naturally occurring PKC inhibitor from a Chinese plant. Human umbilical vein endothelial cells (HUVECs) were incubated with 20 mM glucose in both the presence and absence of hypocrellin A, after which, the protein expression and release of VEGF and mRNA expression and release of ET-1 were measured. VEGF and ET-1 were released into the medium and expressions of VEGF protein and ET-1 mRNA were significantly increased in HUVECs incubated with 20 mM glucose. Hypocrellin A (150 nM) significantly decreased VEGF release (117 ± 3 vs. 180 ± 11 pg/mg, p < 0.05) and VEGF protein expression (from 130 ± 14% to 88 ± 18.5%, p < 0.05). ET-1 release was also reduced in hypocrellin A treated HUVECs (63.3 ± 9.9 vs. 75.2 ± 12.6 ng/mg). Hypocrellin A significantly reversed the effect of high glucose on ET-1 mRNA expression ( p < 0.05). The results revealed that PKC activation plays a pivotal role in VEGF and ET-1 mediated endothelial permeability. The naturally occurring compound hypocrellin A may be a potentially novel treatment for endothelial dysfunction in diabetes.


2009 ◽  
Vol 31 (3) ◽  
pp. 179-190
Author(s):  
Dennis Fontijn ◽  
Linda J. W. Bosch ◽  
Monique C. A. Duyndam ◽  
Maria P. A. van Berkel ◽  
Maarten L. Janmaat ◽  
...  

Background: 1F6 human melanoma xenografts overexpressing either the 18 kD (18kD) form or all (ALL) forms of human basic fibroblast growth factor (bFGF) demonstrate an abundant number of microvessels and accelerated growth. We now examined whether bFGF mediates vascular endothelial growth factor (VEGF) expression.Methods: Quantitative RT-PCR was used to determine bFGF and VEGF mRNA, VEGF protein secretion was measured by ELISA and VEGF promoter activation was assessed by a dual luciferase activity assay. Western blot was carried out to detect phosphorylation of bFGF-regulated target proteins.Results: In 1F6-18kD and 1F6-ALL clones VEGF mRNA was increased 4- to 5-fold and VEGF protein secretion was highly stimulated due to activation of the VEGF promotor. PI-3K, p38 MAPK and ERK1/2 MAPK pathways were activated, while inhibition of PI-3K or p38 resulted in, respectively, 55% and up to 70% reduction of VEGF mRNA overexpression. A concurrent 60% decrease in VEGF protein secretion was mostly apparent upon inhibition of PI-3K. Inhibition of ERK1/2 hardly affected VEGF mRNA or protein secretion. Two unselected human melanoma cell lines with high metastatic potential contained high bFGF and VEGF, while three non- or sporadically metastatic cell lines displayed low bFGF and VEGF.Conclusion: These data indicate that stimulation of VEGF protein secretion in response to bFGF overexpression may contribute to increased vascularization and enhanced aggressiveness in melanoma.


Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 1745-1751 ◽  
Author(s):  
Sharon Barouk ◽  
Tana Hintz ◽  
Ping Li ◽  
Aine M. Duffy ◽  
Neil J. MacLusky ◽  
...  

Vascular endothelial growth factor (VEGF) is critical to angiogenesis and vascular permeability. It is also important in the endocrine system, in which VEGF mediates the vascular effects of estrogens in target tissues such as the uterus, a response attributed to an estrogen response element on the VEGF gene. Here we asked whether 17β-estradiol increases VEGF levels in the brain. We focused on the hippocampus, in which 17β-estradiol and VEGF both have important actions, and used immunocytochemistry to evaluate VEGF protein. VEGF immunoreactivity was compared in adult female rats sampled during the estrous cycle when serum levels of 17β-estradiol peak (proestrous morning) as well as when they are low (metestrous morning). In addition, adult rats were ovariectomized and compared after treatment with 17β-estradiol or vehicle. The results demonstrated that VEGF immunoreactivity was increased when serum levels of 17β-estradiol were elevated. Confocal microscopy showed that VEGF immunofluorescence was predominantly nonneuronal, often associated with astrocytes. Glial VEGF labeling was primarily punctate rather than diffuse and labile because glial VEGF immunoreactivity was greatly reduced if tissue sections were left in an aqueous medium overnight. We conclude that VEGF protein in normal female hippocampus is primarily nonneuronal rather than neuronal and suggest that glial VEGF immunoreactivity has been underestimated by past studies with other methods because there is a labile extracellular pool. We suggest that estrogens may exert actions on female hippocampal structure and function by increasing hippocampal VEGF.


Sign in / Sign up

Export Citation Format

Share Document