scholarly journals Analisis Kepuasan Self Monitoring Blood Glucose Dengan The Glucose Monitoring Satisfaction Survey

2020 ◽  
Vol 8 (1) ◽  
pp. 30
Author(s):  
Shanty Chloranita

Kepuasan self monitoring blood glucose merupakan faktor penting dalam meningkatkan diabetes outcome pasien diabetes tipe 2. Penerapan evidence based nursing bertujuan mengidentifikasi kepuasan self monitoring blood glucose pada pasien diabetes tipe 2. Metode perumusan masalah yang digunakan dengan pendekatan problem (P) intervention (I) comparison (C) outcome (O), dan penelusuran literatur dengan sampel penelitian 51 pasien diabetes tipe 2 Alat ukur yang digunakan the glucose monitoring satisfaction survey (GMSS). Analisis menunjukkan rerata responden dalam penelitian ini 65 % responden dengan total skor 49.4.Kesimpulan the glucose monitoring satisfaction surveydapat diterapkan.

BMJ Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. e040648
Author(s):  
Nanna Lind ◽  
Dorte Lindqvist Hansen ◽  
Signe Sætre Rasmussen ◽  
Kirsten Nørgaard

IntroductionMedical treatment options for type 2 diabetes (T2D) have increased over the last decade and enhance the possibility of individualised treatment strategies where insulin is still one of them. In spite of the advancements in treatment options, less than one-third of the population with T2D obtain their optimal glycaemic goal. In persons with type 1 diabetes, continuous glucose monitoring (CGM) has shown to be the most important driver for improvement in glycaemic control, even more than insulin-pump therapy. The use of technology in T2D has only been investigated in few studies.The overall objective of the research study is to examine the effectiveness of the use of CGM versus self-monitoring of blood glucose (SMBG) in persons with insulin-treated T2D on glycaemic variables and patient-reported outcomes on treatment satisfaction, health behaviour and well-being. The independent effect of peer support will also be studied.Methods and analysisThe study is a single centre, prospective, randomised, open-labelled, three-armed study with the randomisation 2:1:2 in group A with CGM, group B with CGM and peer support, and group C as a control group with SMBG. The participants receive a training course unique for the allocation group. The study runs for 12 months and includes 100 adult participants with insulin-treated T2D, treated at the outpatient clinic at Steno Diabetes Center Copenhagen. Primary outcome is difference in change in time in range. Recruitment begins in August 2020 and ends in July 2021. Final 12-month follow-up is anticipated to be in August 2022.Ethics and disseminationThe study will be carried out in accordance with the Helsinki Declaration and is approved by the Scientific Ethics Committee of the Capital Region (H-20000843). Data collection and handling will be performed in accordance with the General Data Protection Regulation and is approved by the Danish Data Protection Agency (J-2020-100). Dissemination will be in international peer-reviewed journals, conferences and a plain-language summary for participants.Trial registration numberClinicalTrials.gov Registry (NCT04331444).Protocol versionV.3, 11 December 2020.


2012 ◽  
Vol 6 (5) ◽  
pp. 1060-1075 ◽  
Author(s):  
Guido Freckmann ◽  
Christina Schmid ◽  
Annette Baumstark ◽  
Stefan Pleus ◽  
Manuela Link ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenhui Zhang ◽  
Yu Liu ◽  
Baosheng Sun ◽  
Yanjun Shen ◽  
Ming Li ◽  
...  

AbstractFlash glucose monitoring (FGM) was introduced in China in 2016, and it might improve HbA1c measurements and reduce glycaemic variability during T1DM therapy. A total of 146 patients were recruited from October 2018 to September 2019 in Liaocheng. The patients were randomly divided into the FGM group or self-monitoring blood glucose (SMBG) group. Both groups wore the FGM device for multiple 2-week periods, beginning with the 1st, 24th, and 48th weeks for gathering data, while blood samples were also collected for HbA1c measurement. Dietary guidance and insulin dose adjustments were provided to the FGM group patients according to their Ambulatory Glucose Profile (AGP) and to the SMBG group patients according to their SMBG measurements taken 3–4 times daily. All of the participants underwent SMBG measurements on the days when not wearing the FGM device. At the final visit, HbA1c, time in range (TIR), duration of hypoglycaemia and the number of diabetic ketoacidosis (DKA) events were taken as the main endpoints. There were no significant difference in the baseline characteristics of the two groups. At 24 weeks, the HbA1c level of the FGM group was 8.16 ± 1.03%, which was much lower than that of the SMBG group (8.68 ± 1.01%) (p = 0.003). The interquartile range (IQR), mean blood glucose (MBG), and the duration of hypoglycaemia in the FGM group also showed significant declines, compared with the SMBG group (p < 0.05), while the TIR increased in the FGM group [(49.39 ± 17.54)% vs (42.44 ± 15.49)%] (p = 0.012). At 48 weeks, the differences were more pronounced (p < 0.01). There were no observed changes in the number of episodes of DKA by the end of the study [(0.25 ± 0.50) vs (0.28 ± 0.51), p = 0.75]. Intermittent use of FGM by T1DM patients can improve their HbA1c and glycaemic control without increasing the hypoglycaemic exposure in insulin-treated individuals with type 1 diabetes in an developing country.


2021 ◽  
pp. 193229682110541
Author(s):  
Farid Sanai ◽  
Arshman S. Sahid ◽  
Jacqueline Huvanandana ◽  
Sandra Spoa ◽  
Lachlan H. Boyle ◽  
...  

Background: Frequent blood glucose level (BGL) monitoring is essential for effective diabetes management. Poor compliance is common due to the painful finger pricking or subcutaneous lancet implantation required from existing technologies. There are currently no commercially available non-invasive devices that can effectively measure BGL. In this real-world study, a prototype non-invasive continuous glucose monitoring system (NI-CGM) developed as a wearable ring was used to collect bioimpedance data. The aim was to develop a mathematical model that could use these bioimpedance data to estimate BGL in real time. Methods: The prototype NI-CGM was worn by 14 adult participants with type 2 diabetes for 14 days in an observational clinical study. Bioimpedance data were collected alongside paired BGL measurements taken with a Food and Drug Administration (FDA)-approved self-monitoring blood glucose (SMBG) meter and an FDA-approved CGM. The SMBG meter data were used to improve CGM accuracy, and CGM data to develop the mathematical model. Results: A gradient boosted model was developed using a randomized 80-20 training-test split of data. The estimated BGL from the model had a Mean Absolute Relative Difference (MARD) of 17.9%, with the Parkes error grid (PEG) analysis showing 99% of values in clinically acceptable zones A and B. Conclusions: This study demonstrated the reliability of the prototype NI-CGM at collecting bioimpedance data in a real-world scenario. These data were used to train a model that could successfully estimate BGL with a promising MARD and clinically relevant PEG result. These results will enable continued development of the prototype NI-CGM as a wearable ring.


2020 ◽  
Vol 8 (1) ◽  
pp. e001115 ◽  
Author(s):  
Eri Wada ◽  
Takeshi Onoue ◽  
Tomoko Kobayashi ◽  
Tomoko Handa ◽  
Ayaka Hayase ◽  
...  

IntroductionThe present study aimed to evaluate the effects of flash glucose monitoring (FGM) and conventional self-monitoring of blood glucose (SMBG) on glycemic control in patients with non-insulin-treated type 2 diabetes.Research design and methodsIn this 24-week, multicenter, open-label, randomized (1:1), parallel-group study, patients with non-insulin-treated type 2 diabetes at five hospitals in Japan were randomly assigned to the FGM (n=49) or SMBG (n=51) groups and were provided each device for 12 weeks. The primary outcome was change in glycated hemoglobin (HbA1c) level, and was compared using analysis of covariance model that included baseline values and group as covariates.ResultsForty-eight participants in the FGM group and 45 in the SMBG group completed the study. The mean HbA1c levels were 7.83% (62.1 mmol/mol) in the FGM group and 7.84% (62.2 mmol/mol) in the SMBG group at baseline, and the values were reduced in both FGM (−0.43% (−4.7 mmol/mol), p<0.001) and SMBG groups (−0.30% (−3.3 mmol/mol), p=0.001) at 12 weeks. On the other hand, HbA1c was significantly decreased from baseline values in the FGM group, but not in the SMBG group at 24 weeks (FGM: −0.46% (−5.0 mmol/mol), p<0.001; SMBG: −0.17% (−1.8 mmol/mol), p=0.124); a significant between-group difference was also observed (difference −0.29% (−3.2 mmol/mol), p=0.022). Diabetes Treatment Satisfaction Questionnaire score was significantly improved, and the mean glucose levels, SD of glucose, mean amplitude of glycemic excursions and time in hyperglycemia were significantly decreased in the FGM group compared with the SMBG group.ConclusionsGlycemic control was better with FGM than with SMBG after cessation of glucose monitoring in patients with non-insulin-treated type 2 diabetes.Trial registration numberUMIN000026452, jRCTs041180082.


Sign in / Sign up

Export Citation Format

Share Document