scholarly journals Evalouation of Styrene Acrylo Nitrile (SAN), Butadiene Rubber (BR), Nano-silica (Nano SiO2) Blend and Nanocomposite in the Presence of Oxoperoxidant Study

2020 ◽  
Vol 9 (1) ◽  
pp. 24-32

Polymer-nanosilica composite was prepared using Silica nanoparticles as reinforcing fillers in Styrene Acrylo Nitrile (SAN). Copolymer Styrene Acrylo Nitrile (SAN) is such warm, soft, clear resins that because of having suitable Physical and mechanical properties, have good resistance against chemical also low solvent and cost toward another copolymer styrene that caused to be in a category of much used of them. The effect of increasing nano-silica loadings on the mechanical properties of BR nanocomposites was also studied. Its defect is its fragility that, with its alloying with Butadiene Rubber, prevents its fragility. Basically, with adding inorganic Nano bits, changed strength and modulus of elasticity of plastics while increasing Nano bits decrease the strength of the hit. In this study, copolymer Styrene Acrylo Nitrile considered as a matrix and for increasing mechanical qualities used Nano bits silica diacid. Results of automated tests (XRD), (TGA), (HDT), and (SEM) were a sign of improvement of mechanical and thermal qualities. Nowadays, due to using lots of plastics in various industries, this probability exists that destroyed whit being exposed to direct solar radiation. So light destroyed plastics are very important. In this project whit using Oxoperoxidant blend prepared with the ability of light destruction, so that after one and three months, results show to destroy its lights.

Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


2020 ◽  
Vol 1 (3) ◽  
pp. 77-83

Phenol novolac epoxy resin is a polymer matter which its properties can be modified for industrial needs. In this research, nanocomposites of phenol novolac epoxy resin and unsaturated polyester are made nano Bentonite and silica nanoparticles as filler. For this purpose, effect of nanoparticles percent on nanocomposite formation is studied and their physical, mechanical and thermal properties are obtained. The presence of unsaturated polyester in this process forms a cross-link capable of improving the physical and mechanical properties of epoxy resin. Fracture behavior was determined by a SEM device. Moreover, TGA, DSC, impact tests and bending test were applied for data analysis. When process ability is growing, moisture absorption decreases. Fracture toughness was also evaluated in a stoichiometric network. Physical and mechanical properties improve significantly with increasing nanoparticles. The most important reason for using this nanocomposite is its high resistance to corrosion.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1750 ◽  
Author(s):  
Radosław Mirski ◽  
Pavlo Bekhta ◽  
Dorota Dziurka

This study examined the effects of selected types of thermoplastics on the physical and mechanical properties of polymer-triticale boards. The investigated thermoplastics differed in their type (polypropylene (PP), polyethylene (PE), polystyrene (PS)), form (granulate, agglomerate) and origin (native, recycled). The resulting five-ply boards contained layers made from different materials (straw or pine wood) and featured different moisture contents (2%, 25%, and 7% for the face, middle, and core layers, respectively). Thermoplastics were added only to two external layers, where they substituted 30% of straw particles. This study demonstrated that, irrespective of their type, thermoplastics added to the face layers most favorably reduced the hydrophobic properties of the boards, i.e., thickness, swelling, and V100, by nearly 20%. The bending strength and modulus of elasticity were about 10% lower in the experimental boards than in the reference ones, but still within the limits set out in standard for P7 boards (20 N/mm2 according to EN 312).


Author(s):  
A. V. Hmelov

The effect of different с-BN and с-ZrO2 ratios on the phase composition, microstructure, relative density, open porosity, linear shrinkage, physicomechanical properties, and linear correlation of the elastic modulus and toughness of samples during plasma-spark sintering at pressing load 70 MPa in the range of 1200‒1600 °C is shown. The synthesized powders of TiC, c-BN and c-ZrO2, sintered at 1400 °C by the plasma-spark method, are characterized by intense crystallization of the phases. Sintered samples with different ratios of c-BN and c-ZrO2 show the intensive development of mullite and TiC. An increase in the c-BN / c-ZrO2 ratio promotes an active increase in c-BN and a less intensive increase in с-ZrO2 in the range of 1200‒1600 °C, and it causes the formation of a less uniform and densely sintered crystalline microstructure with a large number of pores at 1500 °C. This sample has lower values of physical and mechanical properties and a lower linear correlation of the modulus of elasticity and toughness in the range of 1200‒1600 °C and lower crack resistance at 1500 °C. Ill. 9. Ref. 13. Tab. 1.


2015 ◽  
Vol 1088 ◽  
pp. 411-414 ◽  
Author(s):  
Francisco Augusto Zago Marques ◽  
Carlos Eduardo G. da Silva ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Túlio Hallak Panzera ◽  
...  

This research evaluated, with the of the analyses of variance (ANOVA), a composite material based on epoxy matrix phase reinforced with Portland cement (CP-II) particles (0%wt [100%wt of resin], 20%wt, 40%wt, 60%wt). The response-variable investigated were modulus of elasticity (E) and compressive strength (S), bulk density (ρB), apparent density (ρA) and porosity (P). The highest values of the modulus of elasticity were provided from the composites manufactured with 40wt% of cement addition. The inclusion of 60% of cement implies in a reduction in the mechanical properties when compared with the results of the composite manufactured with 40% of cement. For the physical properties, the gradually inclusion of cement provides increasing in the density of the composites, and reduce the porosity of the materials manufactured.


Sign in / Sign up

Export Citation Format

Share Document