scholarly journals POTENTIAL MARINE-DERIVED FUNGI ISOLATED FROM SPONGE IN PRODUCE NEW AND BENEFICIAL COMPOUNDS

2020 ◽  
Vol 2 (1) ◽  
pp. 52-66
Author(s):  
Wendy Alexander Tanod ◽  
Muliadin ◽  
Yeldi S. Adel ◽  
Didit Kustantio Dewanto

Marine organisms are a source of natural products and produce compounds with a molecular structure that is unique and useful. Thousands of new compounds have biological activitity for anticancer, antiviral, and antimicrobial. This compounds isolated from various marine organism, including from marine-derived fungi. Investigation of chemical compounds from marine-derived fungi isolated from sponge has increased steadily, indicating the important role of marine-derived fungi in the discovery of drug compounds. The sponge has produced various kinds of fungi, which have reported to provide a variety of pharmacologically active metabolites and structurally diverse. Study literature showed that many fungal genera isolated from the marine sponge dominated the genus Acremonium, Aspergillus, Penicillium, Phoma, and Fusarium. The high proportion of genera and new compounds showed that the fungi isolated from the sponge could develop.

Author(s):  
Kevser Taban Akça ◽  
Murside Ayşe Demirel ◽  
Ipek Süntar

: Medicinal plants have a long history of use as food and remedy in traditional and modern societies, as well as have been used as herbal drugs and sources of novel bioactive compounds. They provide a wide array of chemical compounds, many of which can not be synthesized via current synthesis methods. Natural products may provide aromatase inhibitory activity through various pathways and may act clinically effective for treating pathologies associated with excessive aromatase secretion including breast, ovarian and endometrial cancers, endometriosis, uterine fibroid, benign prostatic hyperplasia (BPH), prostate cancer, infertility, and gynecomastia. Recent studies have shown that natural products with aromatase inhibitory activity, could also be good options against secondary recurrence of breast cancer by exhibiting chemopreventive effects. Therefore, screening for new plant-based aromatase inhibitors may provide novel leads for drug discovery and development, particularly with increased clinical efficacy and decreased side effects.


ChemInform ◽  
2004 ◽  
Vol 35 (44) ◽  
Author(s):  
Aberra Fura ◽  
Yue-Zhong Shu ◽  
Mingshe Zhu ◽  
Ronald L. Hanson ◽  
Vikram Roongta ◽  
...  

2009 ◽  
Vol 4 (1) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Sherif Saeed Ebada ◽  
RuAngelie Edrada-Ebel ◽  
Nicole J. de Voogd ◽  
Victor Wray ◽  
Peter Proksch

Fourteen dibromopyrrole alkaloids were isolated from the marine sponge Acanthostylotella sp. collected in Indonesia. In addition to the known compounds 4,5-dibromo-N-(methoxy-methyl)-1 H-pyrrole-2-carboxamide (7), 4,5-dibromo-1 H-pyrrole-2-carboxamide (8), mukanadin D (9), (±)-longamide B methyl ester (10), (±)-longamide B (11), (±)-longamide (12), 3,4-dibromo-1 H-pyrrole-2-carboxamide (13), 2-cyano-4,5-dibromo-1 H-pyrrole (14), six compounds were isolated that proved to be new natural products including acanthamides A – D (1 – 4), methyl 3,4-dibromo-1 H-pyrrole-2-carboxylate (5) and 3,5-dibromo-1 H-pyrrole-2-carboxylic acid (6). The structures of the new compounds were unequivocally identified based on one and two dimensional NMR and on HRFTMS as well as by comparison with the literature.


2020 ◽  
Vol 21 (21) ◽  
pp. 8307
Author(s):  
Sylwia Nakonieczna ◽  
Aneta Grabarska ◽  
Wirginia Kukula-Koch

Gastric cancer belongs to the heterogeneous malignancies and, according to the World Health Organization, it is the fifth most commonly diagnosed cancer in men. The aim of this review is to provide an overview on the role of natural products of plant origin in the therapy of gastric cancer and to present the potentially active metabolites which can be used in the natural therapeutical strategies as the support to the conventional treatment. Many of the naturally spread secondary metabolites have been proved to exhibit chemopreventive properties when tested on the cell lines or in vivo. This manuscript aims to discuss the pharmacological significance of both the total extracts and the single isolated metabolites in the stomach cancer prevention and to focus on their mechanisms of action. A wide variety of plant-derived anticancer metabolites from different groups presented in the manuscript that include polyphenols, terpenes, alkaloids, or sulphur-containing compounds, underlines the multidirectional nature of natural products.


2021 ◽  
Author(s):  
◽  
Charlotte Page

<p>This study reports on the spectroscopy-guided isolation and structural elucidation of secondary metabolites from the New Zealand marine sponge Aaptos confertus. An extraction of the sponge material, followed by several purification steps, led to the isolation of potential new compounds CJP02 20A, CJP02 20C and CJP02 04CB, a known 2,5-diketopiperzine cyclo(L-Phe-L-Pro), and a previously reported 3-((13-methylhexadecyl)oxy)propane-1,2-diol. Corrections to the ¹H NMR data reported for 3-((13-methylhexadecyl)oxy)propane-1,2-diol were also recorded.  The relationship between the oceanic climate where a marine organism habituates and its production of secondary metabolites is discussed. The isolation of a diverse range of compounds, either novel or new to the genus, suggests that organisms originating in temperate climates are similar in value to those from tropical climates, where higher rates of predation (and therefore, selective pressure) are thought to produce superior diversity in their secondary metabolic distribution. In addition to the new compounds isolated, the diketopiperazine described is the first reported molecule of that class from the genus Aaptos.  The significance of the isolated compounds is discussed, in the context of drug discovery and development. The potential of the branched-chain mono-glycerol ether 3-((13-methylhexadecyl)oxy)propane-1,2-diol as a lipid biomarker for the genus Aaptos was examined, as this compound has only been reported from species of that genera. In addition, it’s potential as an immunomodulatory drug is discussed, including the significance of the ether linkage in contrast to the more common ester linkage. The isolation of the 2,5-diketopiperazine cyclo(L-Phe-L-Pro) new to the genus was shown to support the potential in diversity of climate and geographical distribution. This class of molecule is generated through the shikimate biosynthetic pathway; a metabolic route used by bacteria, fungi and algae. A proposed symbiotic relationship between the sponge Aaptos confertus and a proximal bacteria, fungi or algae exemplifies the value of New Zealand’s diverse and unique marine organisms.</p>


Author(s):  
Senhua Chen ◽  
Hongjie Shen ◽  
Yanlian Deng ◽  
Heng Guo ◽  
Minghua Jiang ◽  
...  

Abstract Ascidian-derived microorganisms are a significant source of pharmacologically active metabolites with interesting structural properties. When discovering bioactive molecules from ascidian-derived fungi, two new phenols, roussoelins A (1) and B (2), and ten known polyketides (3–12) were isolated from the ascidian-derived fungus Roussoella siamensis SYSU-MS4723. The planar structure of compounds 1 and 2 was established by analysis of HR-ESIMS and NMR data. The conformational analysis of the new compounds was assigned according to coupling constants and selective gradient NOESY experiments, and absolute configurations were completed by the modified Mosher’s method. Among the isolated compounds, 1, 2, and 9 showed moderate antioxidant capacity. Graphical abstract


2021 ◽  
Author(s):  
◽  
Charlotte Page

<p>This study reports on the spectroscopy-guided isolation and structural elucidation of secondary metabolites from the New Zealand marine sponge Aaptos confertus. An extraction of the sponge material, followed by several purification steps, led to the isolation of potential new compounds CJP02 20A, CJP02 20C and CJP02 04CB, a known 2,5-diketopiperzine cyclo(L-Phe-L-Pro), and a previously reported 3-((13-methylhexadecyl)oxy)propane-1,2-diol. Corrections to the ¹H NMR data reported for 3-((13-methylhexadecyl)oxy)propane-1,2-diol were also recorded.  The relationship between the oceanic climate where a marine organism habituates and its production of secondary metabolites is discussed. The isolation of a diverse range of compounds, either novel or new to the genus, suggests that organisms originating in temperate climates are similar in value to those from tropical climates, where higher rates of predation (and therefore, selective pressure) are thought to produce superior diversity in their secondary metabolic distribution. In addition to the new compounds isolated, the diketopiperazine described is the first reported molecule of that class from the genus Aaptos.  The significance of the isolated compounds is discussed, in the context of drug discovery and development. The potential of the branched-chain mono-glycerol ether 3-((13-methylhexadecyl)oxy)propane-1,2-diol as a lipid biomarker for the genus Aaptos was examined, as this compound has only been reported from species of that genera. In addition, it’s potential as an immunomodulatory drug is discussed, including the significance of the ether linkage in contrast to the more common ester linkage. The isolation of the 2,5-diketopiperazine cyclo(L-Phe-L-Pro) new to the genus was shown to support the potential in diversity of climate and geographical distribution. This class of molecule is generated through the shikimate biosynthetic pathway; a metabolic route used by bacteria, fungi and algae. A proposed symbiotic relationship between the sponge Aaptos confertus and a proximal bacteria, fungi or algae exemplifies the value of New Zealand’s diverse and unique marine organisms.</p>


1982 ◽  
Vol 30 (10) ◽  
pp. 3544-3547 ◽  
Author(s):  
HIROYUKI KIKUCHI ◽  
YASUMASA TSUKITANI ◽  
TOSHITAKA MANDA ◽  
TAKASHI FUJII ◽  
HAJIME NAKANISHI ◽  
...  

2020 ◽  
Vol 20 (19) ◽  
pp. 1966-2010
Author(s):  
Bin Zhang ◽  
Ting Zhang ◽  
Jianzhou Xu ◽  
Jian Lu ◽  
Panpan Qiu ◽  
...  

Marine sponge-associated fungi are promising sources of structurally interesting and bioactive secondary metabolites. Great plenty of natural products have been discovered from spongeassociated fungi in recent years. Here reviewed are 571 new compounds isolated from marine fungi associated with sponges in 2010-2018. These molecules comprised eight different structural classes, including alkaloids, polyketides, terpenoids, meroterpenoids, etc. Moreover, most of these compounds demonstrated profoundly biological activities, such as antimicrobial, antiviral, cytotoxic, etc. This review systematically summarized the structural diversity, biological function, and future potential of these novel bioactive natural products for drug discovery.


Sign in / Sign up

Export Citation Format

Share Document