Marine Sponge-Associated Fungi as Potential Novel Bioactive Natural Product Sources for Drug Discovery: A Review

2020 ◽  
Vol 20 (19) ◽  
pp. 1966-2010
Author(s):  
Bin Zhang ◽  
Ting Zhang ◽  
Jianzhou Xu ◽  
Jian Lu ◽  
Panpan Qiu ◽  
...  

Marine sponge-associated fungi are promising sources of structurally interesting and bioactive secondary metabolites. Great plenty of natural products have been discovered from spongeassociated fungi in recent years. Here reviewed are 571 new compounds isolated from marine fungi associated with sponges in 2010-2018. These molecules comprised eight different structural classes, including alkaloids, polyketides, terpenoids, meroterpenoids, etc. Moreover, most of these compounds demonstrated profoundly biological activities, such as antimicrobial, antiviral, cytotoxic, etc. This review systematically summarized the structural diversity, biological function, and future potential of these novel bioactive natural products for drug discovery.

RSC Advances ◽  
2021 ◽  
Vol 11 (27) ◽  
pp. 16179-16191
Author(s):  
Asmaa Abo Elgoud Said ◽  
Basma Khalaf Mahmoud ◽  
Eman Zekry Attia ◽  
Usama Ramadan Abdelmohsen ◽  
Mostafa Ahmed Fouad

Natural products of marine origin exhibit extensive biological activities, and display a vital role in the exploration of new compounds for drug development.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1959
Author(s):  
Hua Xiao ◽  
Guiyang Wang ◽  
Zhengdong Wang ◽  
Yi Kuang ◽  
Juan Song ◽  
...  

Angucyclinones are aromatic polyketides that possess impressive structural diversity and significant biological activities. The structural diversity of these natural products is attributed to various enzymatic or nonenzymatic modifications on their tetracyclic benz(a)anthracene skeleton. Previously, we discovered an unusual phenylamine-incorporated angucyclinone (1) from a marine Streptomyces sp. PKU-MA00218, and identified that it was produced from the nonenzymatic conversion of a C-ring-cleaved angucyclinone (2) with phenylamine. In this study, we tested the nonenzymatic conversion of 2 with more phenylamine analogues, to expand the utility of this feasible conversion in unusual angucyclinones generation. The (3-ethynyl)phenylamine and disubstituted analogues including (3,4-dimethyl)phenylamine, (3,4-methylenedioxy)phenylamine, and (4-bromo-3-methyl)phenylamine were used in the conversion of 2, which was isolated from the fermentation of Streptomyces sp. PKU-MA00218. All four phenylamine analogues were incorporated into 2 efficiently under mild conditions, generating new compounds 3–6. The activation of 3–6 on nuclear factor erythroid 2-related factor 2 (Nrf2) transcription were tested, which showed that 4 possessing a dimethyl-substitution gave most potent activity. These results evidenced that disubstitutions on phenylamine can be roughly tolerated in the nonenzymatic reactions with 2, suggesting extended applications of more disubstituted phenylamines incorporation to generate new bioactive angucyclinones in the future.


Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 449
Author(s):  
Jianwei Chen ◽  
Panqiao Zhang ◽  
Xinyi Ye ◽  
Bin Wei ◽  
Mahmoud Emam ◽  
...  

Marine microorganisms have drawn great attention as novel bioactive natural product sources, particularly in the drug discovery area. Using different strategies, marine microbes have the ability to produce a wide variety of molecules. One of these strategies is the co-culturing of marine microbes; if two or more microorganisms are aseptically cultured together in a solid or liquid medium in a certain environment, their competition or synergetic relationship can activate the silent biosynthetic genes to produce cryptic natural products which do not exist in monocultures of the partner microbes. In recent years, the co-cultivation strategy of marine microbes has made more novel natural products with various biological activities. This review focuses on the significant and excellent examples covering sources, types, structures and bioactivities of secondary metabolites based on co-cultures of marine-derived microorganisms from 2009 to 2019. A detailed discussion on future prospects and current challenges in the field of co-culture is also provided on behalf of the authors’ own views of development tendencies.


2020 ◽  
Vol 24 (4) ◽  
pp. 354-401 ◽  
Author(s):  
Keisham S. Singh

Marine natural products (MNPs) containing pyrone rings have been isolated from numerous marine organisms, and also produced by marine fungi and bacteria, particularly, actinomycetes. They constitute a versatile structure unit of bioactive natural products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic, neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ- pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α- pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones etc. to name a few. A class of pyrone metabolites, polypropionates which have fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria. Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp., etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance, the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported. However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation and detailed biological activities. This review presents a brief account of the isolation of marine metabolites containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione, (-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.


2020 ◽  
Vol 17 (9) ◽  
pp. 1102-1116
Author(s):  
Sudip Kumar Mandal ◽  
Utsab Debnath ◽  
Amresh Kumar ◽  
Sabu Thomas ◽  
Subhash Chandra Mandal ◽  
...  

Background and Introduction: Sesquiterpene lactones are a class of secondary metabolite that contains sesquiterpenoids and lactone ring as pharmacophore moiety. A large group of bioactive secondary metabolites such as phytopharmaceuticals belong to this category. From the Asteraceae family-based medicinal plants, more than 5,000 sesquiterpene lactones have been reported so far. Sesquiterpene lactone-based pharmacophore moieties hold promise for broad-spectrum biological activities against cancer, inflammation, parasitic, bacterial, fungal, viral infection and other functional disorders. Moreover, these moiety based phytocompounds have been highlighted with a new dimension in the natural drug discovery program worldwide after the 2015 Medicine Nobel Prize achieved by the Artemisinin researchers. Objective: These bitter substances often contain an α, β-unsaturated-γ-lactone as a major structural backbone, which in recent studies has been explored to be associated with anti-tumor, cytotoxic, and anti-inflammatory action. Recently, the use of sesquiterpene lactones as phytomedicine has been increased. This study will review the prospect of sesquiterpene lactones against inflammation and cancer. Methods: Hence, we emphasized on the different features of this moiety by incorporating its structural diversity on biological activities to explore structure-activity relationships (SAR) against inflammation and cancer. Results: How the dual mode of action such as anti-inflammatory and anti-cancer has been exhibitedby these phytopharmaceuticals will be forecasted in this study. Furthermore, the correlation of anti-inflammatory and anti-cancer activity executed by the sesquiterpene lactones for fruitful phytotherapy will also be revealed in the present review in the milieu of pharmacophore activity relation and pharmacodynamics study as well. Conclusion: So, these metabolites are paramount in phytopharmacological aspects. The present discussion on the future prospect of this moiety based on the reported literature could be a guide for anti-inflammatory and anti-cancer drug discovery programs for the upcoming researchers.


2021 ◽  
Vol 7 (7) ◽  
pp. 541
Author(s):  
Lúcia P. S. Pimenta ◽  
Dhionne C. Gomes ◽  
Patrícia G. Cardoso ◽  
Jacqueline A. Takahashi

Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1898
Author(s):  
Fauzia Izzati ◽  
Mega Ferdina Warsito ◽  
Asep Bayu ◽  
Anggia Prasetyoputri ◽  
Akhirta Atikana ◽  
...  

Marine invertebrates have been reported to be an excellent resource of many novel bioactive compounds. Studies reported that Indonesia has remarkable yet underexplored marine natural products, with a high chemical diversity and a broad spectrum of biological activities. This review discusses recent updates on the exploration of marine natural products from Indonesian marine invertebrates (i.e., sponges, tunicates, and soft corals) throughout 2007–2020. This paper summarizes the structural diversity and biological function of the bioactive compounds isolated from Indonesian marine invertebrates as antimicrobial, antifungal, anticancer, and antiviral, while also presenting the opportunity for further investigation of novel compounds derived from Indonesian marine invertebrates.


Biomolecules ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
B. Pilón-Jiménez ◽  
Fernanda Saldívar-González ◽  
Bárbara Díaz-Eufracio ◽  
José Medina-Franco

Compound databases of natural products have a major impact on drug discovery projects and other areas of research. The number of databases in the public domain with compounds with natural origins is increasing. Several countries, Brazil, France, Panama and, recently, Vietnam, have initiatives in place to construct and maintain compound databases that are representative of their diversity. In this proof-of-concept study, we discuss the first version of BIOFACQUIM, a novel compound database with natural products isolated and characterized in Mexico. We discuss its construction, curation, and a complete chemoinformatic characterization of the content and coverage in chemical space. The profile of physicochemical properties, scaffold content, and diversity, as well as structural diversity based on molecular fingerprints is reported. BIOFACQUIM is available for free.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34959-34976
Author(s):  
Enas Reda Abdelaleem ◽  
Mamdouh Nabil Samy ◽  
Samar Yehia Desoukey ◽  
Miaomiao Liu ◽  
Ronald J. Quinn ◽  
...  

Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities.


Sign in / Sign up

Export Citation Format

Share Document