TRANSCRIPTIONAL REGULATION OF RAT ADRENAL ZONA GLOMERULOSA POSTNATAL DEVELOPMENT EXPOSED TO LOW DOSES OF DDT

Author(s):  
Sergey Stanislavovich Obernikhin ◽  
Nataliya Valentinovna Yaglova ◽  
Valentin Vasilyevich Yaglov ◽  
Svetlana Vladimirovna Nazimova

The role of the transcription factor Oct4 and canonical Wnt signaling in the postnatal morphogenesis of the glomerular zone of the adrenal glands of rats under the conditions of pre- and postnatal exposure to low doses of DDT endocrine disruptor was determined.

Author(s):  
Nataliya V. Yaglova ◽  
Sergey S. Obernikhin ◽  
Valentin V. Yaglov ◽  
Svetlana V. Nazimova ◽  
Ekaterina P. Timokhina

Developmental exposure to persistent endocrine disruptors is of a great concern. Affection of adrenal hormones production by low-dose exposure to dichlorodiphenyltrichloroethane (DDT) has been revealed recently. Objective of the research – investigation of ultrastructural mechanisms of impaired mineralocorticoid and glucocorticoid production after prenatal and postnatal exposure to endocrine disruptor DDT. Male Wistar rats exposed to low doses of DDT during prenatal and postnatal development were studied. Aldosterone and corticosterone levels in serum were measured by enzyme-linked immunosorbent assay, histological examination and electron microscopy of the adrenals were performed. Pubertal rats, developmentally exposed to low doses of DDT, demonstrated lowered aldosterone and elevated corticosterone serum levels. After puberty the rats showed tendency to normalization of hormones’ production. Morphological examination of the adrenals revealed less developed zona glomerulosa in pubertal period and its relative hyperplasia after puberty. Microcirculatory disorders and focal cell death were observed in outer zona fasciculata. Electron microscopy of glomerulosa cells found signs of suppressed secretory activity in pubertal period and no significant reduction of mitochondria size in adult rats. Total number of mitochondria in 1 µm2 of cytoplasm and percent of mitochondria with swollen matrix were diminished compared to the control. Cells of inner zona fasciculata demonstrated increased functional activity. Age-dependent changes in fine structure of fasciculata cells were similar to the control, but were more pronounced. In this way, cellular mechanism of impaired mineralocorticoid production in rats prenatally and postnatally exposed to low doses of endocrine disruptor DDT, are insufficient mitochondrion function and impaired reorganization of mitochondrial apparatus, which occurs during pubertal period. Mechanisms of elevated glucocorticoid secretion are attributed to enhanced function of mitochondria in fasciculata cells.


2018 ◽  
Vol 48 (2) ◽  
pp. 419-432 ◽  
Author(s):  
Yuanyuan Zhao ◽  
Leilei Tao ◽  
Jun Yi ◽  
Haizhu Song ◽  
Longbang Chen

Radioresistance is a major obstacle in radiotherapy for cancer, and strategies are needed to overcome this problem. Currently, radiotherapy combined with targeted therapy such as inhibitors of phosphoinosotide 3-kinase/Akt and epidermal growth factor receptor signaling have become the focus of studies on radiosensitization. Apart from these two signaling pathways, which promote radioresistance, deregulation of Wnt signaling is also associated with the radioresistance of multiple cancers. Wnts, as important messengers in the tumor microenvironment, are involved in cancer progression mainly via canonical Wnt signaling. Their role in promoting DNA damage repair and inhibiting apoptosis facilitates cancer resistance to radiation. Thus, it seems reasonable to target Wnt signaling as a method for overcoming radioresistance. Many small-molecule inhibitors that target the Wnt signaling pathway have been identified and shown to promote radiosensitization. Therefore, a Wnt signaling inhibitor may help to overcome radioresistance in cancer therapy.


2019 ◽  
Vol 98 ◽  
pp. 246-255 ◽  
Author(s):  
Chu-Chih Hung ◽  
Amy Chaya ◽  
Kai Liu ◽  
Konstantinos Verdelis ◽  
Charles Sfeir

Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 904 ◽  
Author(s):  
Sara El-Sahli ◽  
Ying Xie ◽  
Lisheng Wang ◽  
Sheng Liu

The Wingless (Wnt)/β-catenin pathway has long been associated with tumorigenesis, tumor plasticity, and tumor-initiating cells called cancer stem cells (CSCs). Wnt signaling has recently been implicated in the metabolic reprogramming of cancer cells. Aberrant Wnt signaling is considered to be a driver of metabolic alterations of glycolysis, glutaminolysis, and lipogenesis, processes essential to the survival of bulk and CSC populations. Over the past decade, the Wnt pathway has also been shown to regulate the tumor microenvironment (TME) and anti-cancer immunity. Wnt ligands released by tumor cells in the TME facilitate the immune evasion of cancer cells and hamper immunotherapy. In this review, we illustrate the role of the canonical Wnt/β-catenin pathway in cancer metabolism and immunity to explore the potential therapeutic approach of targeting Wnt signaling from a metabolic and immunological perspective.


2006 ◽  
Vol 26 (23) ◽  
pp. 8914-8927 ◽  
Author(s):  
Alexander Schepsky ◽  
Katja Bruser ◽  
Gunnar J. Gunnarsson ◽  
Jane Goodall ◽  
Jón H. Hallsson ◽  
...  

ABSTRACT Commitment to the melanocyte lineage is characterized by the onset of expression of the microphthalmia-associated transcription factor (Mitf). This transcription factor plays a fundamental role in melanocyte development and maintenance and seems to be crucial for the survival of malignant melanocytes. Furthermore, Mitf has been shown to be involved in cell cycle regulation and to play important functions in self-renewal and maintenance of melanocyte stem cells. Although little is known about how Mitf regulates these various processes, one possibility is that Mitf interacts with other regulators. Here we show that Mitf can interact directly with β-catenin, the key mediator of the canonical Wnt signaling pathway. The Wnt signaling pathway plays a critical role in melanocyte development and is intimately involved in triggering melanocyte stem cell proliferation. Significantly, constitutive activation of this pathway is a feature of a number of cancers including malignant melanoma. Here we show that Mitf can redirect β-catenin transcriptional activity away from canonical Wnt signaling-regulated genes toward Mitf-specific target promoters to activate transcription. Thus, by a feedback mechanism, Mitf can diversify the output of canonical Wnt signaling to enhance the repertoire of genes regulated by β-catenin. Our results reveal a novel mechanism by which Wnt signaling and β-catenin activate gene expression, with significant implications for our understanding of both melanocyte development and melanoma.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3420-3420
Author(s):  
Ya-Wei Qiang ◽  
Shmuel Yaccoby ◽  
John D. Shaughnessy

Wnt signaling is a highly conserved signal transduction pathway involved in embryonic development. Inappropriate canonical Wnt signaling resulting in beta-catenin stabilization, is associated with several types of human cancers. Multiple myeloma plasma cells express Wnt receptors, Wnt ligands and soluble Wnt inhibitors. Wnt signaling is central to osteoblast and osteoclasts development and secretion of Wnt signaling inhibitors by myeloma cells is thought to contribute to the osteolytic phenotype seen in this disease and prostate cancer. While it is now clear that MM cells can signal through both canonical and non-canonical mechanisms, there are conflicting data as to the direct role of Wnt signaling in myeloma cell biology. Others have shown that Wnts cause proliferation of myeloma cells; while we have shown that canonical Wnts cause morphological changes and migration, but not cell proliferation. To further elucidate the role of canonical Wnt signaling in myeloma and myeloma bone disease we used limiting dilutions in the presence of G418 to create two independent stable clones of the myeloma cell line NCI-H929 expressing Wnt-3A (H929/W3A), which is not expressed in myeloma, and an empty vector (H929/EV). Because Wnt antibodies are not available we cloned Wnt-3A as a fusion protein with hemagglutinin (HA). Western blots against HA revealed a positive band of the expected size only in the H929/W3A clones. GST-E-cadherin binding assay and Western blot analysis revealed elevated levels of total and free beta-catenin in H929/W3A relative to H929/EV, however, there this was not associated with increased growth or proliferation by MTT assay. To determine the in-vivo growth characteristics and effects on bone resorption of Wnt-3A producing cells, we transplanted the lines into a human bone implanted the flank of SCID mice. Tumor growth rate as determined by increased production of human immunoglobulin in mice serum was significantly slower in the Wnt-3A transfected cells relative to controls (P < .05). Loss of bone mineral density (BMD) of the implanted bones engrafted with H929/W3A cells was lower than in bones engrafted with H929/EV cells (P < .05). Reduced tumor burden and BMD loss was also visualized on x-ray radiographs. Taken together these data indicate that all factors promoting bone resorption produced by or elicited by the myeloma cell line H929 are subordinate to canonical Wnt signaling and that prevention of bone destruction may help control myeloma progression.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2398-2398
Author(s):  
Elena K Siapati ◽  
Magda Papadaki ◽  
Zoi Kozaou ◽  
Erasmia Rouka ◽  
Evridiki Michali ◽  
...  

Abstract Abstract 2398 Poster Board II-375 B-catenin is the central effector molecule of the canonical wnt signaling pathway which governs cell fate and differentiation during embryogenesis as well as self-renewal of hematopoietic stem cells. Deregulation of the pathway has been observed in various malignancies including myeloid leukemias where over-expression of β-catenin is an independent adverse prognostic factor. In the present study we examined the functional outcome of stable β-catenin down-regulation through lentivirus-mediated expression of short hairpin RNA (shRNA). Reduction of the β-catenin levels in AML cell lines and patient samples diminished their in vitro proliferation ability without significantly affecting cell viability. In order to study the role of β-catenin in vivo, we transplanted leukemic cell lines with control or reduced levels of β-catenin in NOD/SCID animals and analyzed the engraftment levels in the bone marrow. We observed that while the immediate homing of the cells was not affected by the β-catenin levels, the bone marrow engraftment was directly dependent on its levels. Subsequent examination of bone marrow sections revealed that the reduced engraftment was partly due to the inability of the cells with lower β-catenin levels to dock to the endosteal niches, a finding that was confirmed in competitive repopulation assays with untransduced cells. When we examined the expression levels of adhesion molecules and integrins in engrafted cells in vivo, we observed a significant down-regulation of CD44 expression, a molecule that participates in the interaction of HSCs with the niche. Gene expression analysis of the components of the wnt signaling pathway showed that the pathway is subject to tight transcriptional regulation with minor expression deviations. We did, however, observe an up-regulation in components that participate in the non-canonical wnt signaling pathways such as the WNT5B ligand. Ongoing experiments in normal cord blood CD34+ cells will determine the in vivo role of β-catenin signaling in normal hematopoietic progenitors. In conclusion, our study showed that β-catenin comprises an integral part in the development and progression of AML in vivo, indicating that manipulation of the wnt pathway may hold a therapeutic potential in the management of AML. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document