scholarly journals Stabilization of clayey soil using Gypsum

Author(s):  
Bussa Reethu ◽  
Mankala Sumanth Kumar ◽  
Gunde Sharath ◽  
Batchu Ramanjaneyulu ◽  
Ram Kishore Manchiryal

The poor soil properties result in foundation failures of the structure which further causes in cracks of structural elements and walls. To avoid this, it is essential to enhance the soil properties. Soil stabilization is one of the processes to improve the engineering properties of the soil and thus making it more stable. It is required when the soil available for construction is not appropriate for the intended purpose. In this research, for stabilizing clayey soil and to achieve higher strength in minimum time period, gypsum (CaSO4.2H2O) is used as one of the soil stabilizing agents. Experiments were planned to evaluate the properties of clayey soil on the addition of different percentages of Gypsum i.e., 2%, 4%, 6% and 8% to the existing soil. Tests conducted on clayey soil mixed with Gypsum included are, Atterberg’s Limits, Specific Gravity and Standard Proctor Test. A comparison between the properties of clayey soil, clayey soil mixed with Gypsum is done to understand the effect of Gypsum addition on soil properties. It was observed that the soil properties were enhanced for 6% of Gypsum addition to the soil.

Author(s):  
Zahid Hussain Shapoo

Abstract: Generally clay exhibits undesirable engineering properties like poor bearing capacity and higher compressibility. Thus the improvement of the soil at site is indispensable. There are many stabilizers to improve the strength of soil like Jute, Gypsum, fly ash, rice husk ash, cement, lime used rubber tyres etc. In the present Study , we added jute and gypsum as stabilizer to improve the properties of clayey soil . Locally available clayey soil is used in this study . The objective of this study is to improve the strength of the clayey soil by making soil-jute and soil-jute-gypsum mixture. six specimens are prepared to investigate the properties of soil out of which three specimens are prepared by adding 1% of jute with varying length of 1cm,2cm and 3cm and the remaining three specimens are prepared by adding 1% jute and gypsum each with varying length of 1cm,2cm and 3cm of jute . Standard proctor test and unconfined compressive strength test are conducted to analyse the optimum moisture content (OMC), Maximum dry density (MDD) and compressive strength of soil mixture.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Eshetu Mekonnen ◽  
Ameha Kebede ◽  
Tekle Tafesse ◽  
Mesfin Tafesse

Soil stabilization is a mechanical or chemical alteration of one or more soil properties to create an improved soil material possessing the desired engineering properties. The aim of this article was to review bioenzyme-based soil stabilization techniques with an emphasis on bioenzymes production, mechanism of soil stabilization and future challenges, and opportunities of the sector. Soils are stabilized to increase strength and durability or to prevent erosion and dust generation. Cost-effective soil stabilization technology has been a fundamental part of any construction and is very important for economic growth in any country. In some cases, construction has been challenged due to the high cost of soil stabilization processes. Besides, methods of stabilizations using common stabilizing agents are getting costly. Currently, there is a growing interest to identify new and green technology to improve construction techniques and to expand the road network. Therefore, the search for new materials and improved techniques to process the local materials has received an increased focus. For developing countries, bioenzymes are now creating an opportunity to improve soil stability with tremendous effectiveness in the overall process of soil stabilization. In the world, bioenzymes have been used in different projects for several years and are generally proprietary products, often of patented formulation that needs intensive field tests. Currently, the use and production of bioenzymes is becoming the most promising key for the advancement of a country by saving time, energy, and finance. It also reduces environmental pollution due to carbon emission by the conventional stabilizers. Thus, a better understanding of this emerging technology is of utmost importance to exploit any improvement it can offer to soil stability. With little research and practice, it is possible to produce soil stabilizing bioenzymes using local raw materials. Due to this, production of low cost, easily and widely applicable, and environmentally friendly enzymatic formulations from locally available raw materials should be the interest of research and academic institutes of any country.


Author(s):  
Pēteris Šķēls ◽  
Kaspars Bondars ◽  
Raitis Plonis ◽  
Viktors Haritonovs ◽  
Andris Paeglītis

Modification and stabilization of road structure unbound layers has extensively been studied both at laboratory and field for decades. The most commonly used binders for soil modification and stabilization are cement and quicklime (CaO), but alternative pozzolans and their mixtures are of economical, technical and environmental interest. This study presents soil stabilization with wood fly ash (WFA) at laboratory. Natural sand (Sa), Sa mixtures with 10% and 20% WFA were compacted at optimal water content according to Standard Proctor test LVS EN 13286-2:2012, and California bearing ratio (CBR) tested according to LVS EN 13286-47:2012 for cured samples after 96 hours immersed in water with 2 kg surcharge and after 7 days sealed simultaneously. At the same time also Immediate bearing index was determined for natural soil and their mixture with 10% WFA. Results showed 3.79 times enhancement in CBR values Sa after 7 days curing, justifying that WFA is valuable material for hydraulically bound mixtures.


2021 ◽  
Vol 6 (2) ◽  
pp. 044-050
Author(s):  
Tsion Mindaye ◽  
Emer Tucay Quezon ◽  
Temesgen Ayna

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


2019 ◽  
Vol 8 (2) ◽  
pp. 2574-2578

Stabilization of clay soil has been carried out for improving its engineering properties of soil. To stabilize the clayey soil use Brick Kiln Dust of and waste Coir Fibre, an experiment is conducted to evaluate the properties of soil mixing with 10%, 20% &30% percentage of Brick Kiln Dust and Coir Fibre contents of 0.5%, 0.75% and 1.0% by weight of soil sample and then the tests are performed. Tests conducted for clayey soil mixed with Brick Kiln Dust and Coir Fibre are Liquid Limit, Plastic Limit, Compaction (OMC & MDD), and California Bearing Ratio (CBR). Flexible pavements sections were degined for non-stabilized and stabilized subgrades to be standard axles traffic intensities. The preamble of brick kiln dust and coir fiber is analyzed to improve the features of expansion subgrade materials and other sub-base materials. Also design the thickness of pavement when it is stabilized with optimized brick kiln dust and coir fiber. The results reveal that CBR value increased with increase of Brick Kiln Dust and Coir fibre. The soil stabilization treatment significantly improved the engineering properties of the soil, and reduced the pavement thickness and also cost of the project.


1970 ◽  
Vol 3 ◽  
Author(s):  
Md Gazi Ferooz Rahman ◽  
MDH Talukder ◽  
AHMM Rahman

Soil compaction is one of the most important aspects of any earthwork construction. Compaction improves the engineering properties of the fills. Nearly all compaction specifications are based on achieving a certain value of dry unit weight (γd). During construction, the geotechnical engineers measure the unit weight of compacted soil in the field to verify the contractor’s compliance with the requirement. This paper is a project study of road construction project "Road Zia Colony to Mirpur Cantonment". Soil samples were collected from five different locations. In situ dry density was obtained by Sand Cone Test from each location. The laboratory tests (Standard Proctor Test) were carried out to find out the dry density for each sample. The maximum dry density in relation to moisture content was obtained. Relative compaction (CR) of soil at each location was then calculated to the soil compaction of the said road project.KEY WORDS: Compaction; porosity; density; Unit Weight DOI: http://dx.doi.org/10.3329/mist.v3i0.8046


Soil is the foundation material which supports loads from an overlying structure; it mainly consists of minerals, organic matter, liquids etc. In India the soil most present is Clay, using which the construction of sub grade is deemed problematic. as Clayey soils are expansive soils. The problem of using clayey soil for civil engineering constructions has been observed since early ages.. On the basis of type of soil, soil stabilization is undertaken and is a major technology in construction engineering. Soil strengthening refers to the process of enhancing physical, chemical and mechanical properties of soil to maintain its stability. In this investigation, an attempt has been made to improve the engineering properties of locally available clayey soil near Mahabalipuram by making a composite mix with silica fume and wood ash with equal composition in various proportions. Addition of such materials will increase the physical as well as chemical properties of the soil. study, experimental investigations are carried out to study the beneficial effects of stabilizing Clay soil using silica fume and wood ash with 3%, 5% and 7%. The tests were conducted in order to evaluate the improvement in strength characteristics of the sub graded soil. The parameters tested included the Atterberg limits, Modified Proctor Density, California bearing ratio (CBR). Results showed that the geotechnical parameters of clay soil improved substantially by the addition of wood husk ash and silica fume


2021 ◽  
Author(s):  
Emer Tucay Quezon ◽  
Tsion Mindaye

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


Soil is an essential part of construction and forms a base for all the essential activities of construction. Soil is not same at all places and sometimes lacks in various properties. So, to improve its various qualities and to meet the engineering requirements like quality, durability, etc., we can achieve it by adding suitable admixtures such as, lime, cement, fly ash, plastic, gypsum etc. This not only improves the properties of soil but also reduces the quantities of waste in the environment. The aim of this study is to experimentally investigate the effects of adding Lime, Brick dust and Plastic and low density polyethylene to Clayey Soil. The low density polyethylene is a vital environmental pollutant and its biodegradation is the focus of the present study. The clay soil used was taken near Baddi, Himachal Pradesh. The optimum contents of Lime, Brick dust and LDPE in the Clay soil was found by Standard Proctor Test and CBR test, and the results showed by adding 20% lime , 8% Brick dust and 1.5% LDPE in the Clay soil, we get the maximum Bearing Capacity of the mixture.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Kennedy C. Onyelowe ◽  
Michael E. Onyia ◽  
Duc Bui Van ◽  
Haci Baykara ◽  
Hyginus U. Ugwu

Problematic soil stabilization processes involve the application of binders to improve the engineering properties of the soil. This is done to change the undesirable properties of these soils to meet basic design standards. However, very little attention has been given to the reactive phase of soil stabilization. This phase is the most important in every stabilization protocol because it embodies the reactions that lead to the bonding of the dispersed particles of clayey soil. Hence, this reactive phase is reviewed. When clayey soils which make up the greatest fraction of expansive soil come in contact with moisture, they experience volume changes due to adsorbed moisture that forms films of double diffused layer on the particles. When this happens, the clayey particles disperse and float, increasing the pore spaces or voids that exist in the soil mass. Stabilizations of these soils are conducted to close the gaps between the dispersed clayey soil particles. This is achieved by mixing additives that will release calcium, aluminum, silicon, etc., in the presence of adsorbed moisture, and a hydration reaction occurs. This is followed by the displacement reaction based on the metallic order in the electrochemical series. This causes a calcination reaction, a process whereby calcium displaces the hydrogen ions of the dipole adsorbed moisture and displaces the sodium ion responsible for the swelling potential of clayey soils. These whole processes lead to a pozzolanic reaction, which finally forms calcium alumina-silica hydrate. This formation is responsible for soil stabilization.


Sign in / Sign up

Export Citation Format

Share Document