Research of Flame-Retardant and Physical and Mechanical Properties of Thermally Expanding Sealing Tapes Based on Polyolefin Thermoplastic Elastomers

2021 ◽  
Vol 80 (3) ◽  
pp. 140-143
Author(s):  
A.N. Andreev ◽  
◽  
P.M. Polyakova ◽  
Yu.V. Olikhova ◽  
A.M. Tolstov ◽  
...  

A study of the flame-retardant (FR) properties, the degree of expansion (DE) and the strength properties of thermally expanding sealing tapes (TST) based on polyolefin thermoplastic elastomers is presented. Experimental TST based on ethylene vinyl acetate rubber (БК-E), and a semi-crystalline copolymer of ethylene and propylene (БК-V) with additives of oxidized graphite (OG) were obtained on laboratory equipment. DE, categories of FR and strength properties of БК-E and БК-V differ slightly. The morphology of the char foams of the obtained compositions was determined. Based on the summary of the results it was found that the composition of БК-E has a better FR in comparison with БК-V. It is estimated that this is primarily due to the nature of the polymer matrix of the compositions, as well as the distribution of components in it, in particular, OG, and their interaction with each other during the combustion process. It is shown that the properties of the developed TST are at the level of the existing ones. A further series of research is expected.

2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


2020 ◽  
Vol 2020 (2) ◽  
pp. 64-69
Author(s):  
I Khaidarov ◽  
◽  
R Ismailov

This article presents studies of fire resistance in the treatment of expanded vermiculite, which depends on the size of the dispersed particles and the orientation of the granules, their moisture and temperature. It has been studied that one of the interesting and important in practice properties of vermiculite is its ability to swell and turn into a lightweight effective material for imparting fire resistance. The properties and compositions of vermiculite from the Tebinbulak deposit are studied, from which a flame-retardant suspension is prepared for processing textile materials based on vermiculite dissolved in orthophosphoric acid and alkali in an aqueous medium. When modifying materials with developed flame-retardant suspensions, it is possible to obtain fire-resistant textile materials that meet the requirements of GOST for fire resistance, smoke generation and other physical and mechanical properties.


2020 ◽  
pp. 451-457
Author(s):  
Aleksandr Yur'yevich Vititnev ◽  
Yuriy Davydovich Alashkevich ◽  
Natal'ya Geral'dovna Chistova ◽  
Roman Aleksandrovich Marchenko ◽  
Venera Nurullovna Matygullina

This paper presents the results of experimental studies of the physical and mechanical properties of wood-fiber boards of the wet production method when regulating the design and technological parameters of the grinding process. This allowed us to determine the influence of the working clearance between the grinding discs and the concentration of fibre mass with the subject to of quality change wood fiber after defibrator using the developed construction of the disc fibrillation action on the physico-mechanical properties of boards. As a result of the experiment, regression models were obtained that adequately describe the studied grinding process and allow predicting the values of physical and mechanical properties of the finished product depending on the established  parameters process. A comparative analysis of the size and quality characteristics of the fiber semi-finished product and its fractional composition when using a developed construction the disc of refiner fibrillation action and a traditional design used in industry is carried out. The preferential efficiency of the grinding process under the fibrillating effect the disc of refiner in comparison with the traditional construction disc of refiner is established. As a result, there is a significant improvement in the quality indicators of the fiber semi-finished product and its composition due to the formation and predominance in the total mass of long and thin, respectively, flexible fibrillated fibers with high tile-forming properties, which allows to increase the strength properties of the product (by 20–25%), without using binding resins.


2018 ◽  
Vol 935 ◽  
pp. 79-83
Author(s):  
A.N. Volotskoy ◽  
Yuriy V. Yurkin ◽  
V.V. Avdonin

This research is devoted to the actual problem of the development of damping polymer materials which are effective in a wide range of temperatures and having satisfactory strength characteristics. There are many works devoted to the study of dynamic mechanical properties of filled composites, but most do not take into account the influence of plasticizer on the strength properties of the polymer, as they change its characteristics for the worse. In this respect, the study and comparison of the mechanical properties of the polymer base with the introduction of different types and concentrations of plasticizers is an urgent task. According to the received regularities it was possible to define the type, concentration and boundaries of the polarity of the plasticizer, which reduces the strength characteristics of ethylene-vinyl acetate to a lesser degree.


Polymer ◽  
2009 ◽  
Vol 50 (15) ◽  
pp. 3478-3487 ◽  
Author(s):  
Yaru Shi ◽  
Takashi Kashiwagi ◽  
Richard N. Walters ◽  
Jeffrey W. Gilman ◽  
Richard E. Lyon ◽  
...  

2008 ◽  
Vol 81 (2) ◽  
pp. 244-264 ◽  
Author(s):  
Samik Gupta ◽  
Radha Kamalakaran ◽  
Avdhut Maldikar ◽  
Ashok Menon ◽  
Anil K. Bhowmick

Abstract The heat aging performance of a series of novel poly (phenylene ether) (PPE) based thermoplastic elastomers (TPEs) from styrene-ethylene-butylene-styrene (SEBS), ethylene vinyl acetate (EVA) and PPE-polystyrene (PS), was studied. This quaternary blend showed superior heat aging performance due to the high Tg thermoplastic component (PPE). At 80 °C, different compositions of the quaternary blends were exposed for 500 hours. Effects of compositions, vinyl acetate (VA) content of EVA and different molecular weights (MW) of SEBS, on the mechanical properties upon heat aging were analyzed in detail. A representative composition (based on the mechanical properties) of the quaternary blend (SEBS/EVA/PPE-PS: 45/30/25) was exposed at different temperatures, i.e. 80 °C, 120 °C, 140 °C and 170 °C, for 2000 hours. Thermal degradation profiles of change in tensile strength and percent elongation at break due to thermal degradation of the blends were monitored and “half-life” temperature was estimated. Using the Arrhenius equation, the “lifetime” of the quaternary blend was predicted (100,000 hours at ∼131 °C). Change in functionalities due to chemical degradation was also monitored using Fourier Transform Infrared Spectroscopy (FTIR). As a consequence of degradation, the shift in Tg was observed by temperature modulated DSC (Differential Scanning Calorimeter). Detailed microstructural studies were done to establish the structure-property correlation, for degraded as well as pristine materials. The degradation mechanism was elucidated on the basis of morphology and structure studies of the blends.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2107
Author(s):  
Dongwei Yao ◽  
Guangzhong Yin ◽  
Qingqing Bi ◽  
Xu Yin ◽  
Na Wang ◽  
...  

In this study, we selected basalt fiber (BF) as a functional filler to improve the mechanical properties of ethylene vinyl acetate (EVA)-based flame retardant materials. Firstly, BF was modified by grafting γ-aminopropyl triethoxysilane (KH550). Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) were used to comprehensively prove the successful modification of the BF surface. Subsequently, the modified BF was introduced into the EVA/magnesium hydroxide (MH) composites by melt blending. The limiting oxygen index (LOI), UL-94, cone calorimeter test, tensile test, and non-notched impact test were utilized to characterize both the flame retardant properties and mechanical properties of the EVA/MH composites. It was found that the mechanical properties were significantly enhanced without reducing the flame retardant properties of the EVA/MH composites. Notably, the surface treatment with silane is a simple and low-cost method for BF surface modification and the pathway designed in this study can be both practical and effective for polymer performance enhancement.


2018 ◽  
Vol 162 ◽  
pp. 02030 ◽  
Author(s):  
Baydaa Alrashedi ◽  
Maan Hassan

Many past studies concerned about using of nanoclay (nC) particles as an active pozzolan to concrete and their influence on the physical and mechanical properties. In this study, the effects of various nanoclay particle sizes and dosages on the compressive and flexural tensile strengths of SCCs were investigated. Progressive nC percentages of 2%, 5% and 8% were replaced with cements and the produced SCCs were evaluated and compared with similar replacement levels of the metakaolin MK which have comparable chemical compositions. The produced SCCs were tested for compressive, flexural tensile and splitting tensile strengths in 28 and 90 days. Results indicated that nC replacement harmed all the studied mechanical properties at 28 days age. After 90 days, however, both compressive and tensile strengths of nC concretes show superior strengths than control concrete and also exceeded MK concretes made of equivalent replacement levels. This behavior demonstrates the pozzolanic activity of the nC particles at later ages and proved to be significantly more effective than early ages.


Sign in / Sign up

Export Citation Format

Share Document