scholarly journals Effect of tillage and weed management practices on micronutrient availability in post-harvest soil under maize-wheat cropping system

2021 ◽  
Vol 23 (2) ◽  
pp. 149-155
Author(s):  

Tillage practices play a major role in nutrient dynamics under different cropping systems. The objective of this study was to examine the influence of different tillage practices and weed management on micronutrient availability in soil. The treatments included three tillage in main plot and four weed management practices in sub plot were arranged in a spilt plot design with three replications.Measurements made at the end of 4 years, showed that in the 0-15 cm soil depth, effect of different tillage and weed management practices on soil properties was significant. The values of soil pH and EC declined under ZT. The mean value of SOC (8.9 g kg-1) was reported higher under ZT. Higher value of Zn and Fe was reported under ZT (3.63 mg kg-1, 15.49 mg kg-1) followed by CT (2.87 mg kg-1, 13.65 mg kg-1) and FIRBS (2.47 mg kg-1,13.47 mg kg-1) respectively. In case of Cu, the higher value (1.32 mg kg-1) was reported under ZT followed by FIRBS (1.30 mg kg-1) and CT (1.22 mg kg-1). Trend was reverse in case of Mn and content was significantly higher (9.4 mg kg-1) under CT followed by ZT (9.02 mg kg-1) and FIRBS (8.70 mg kg-1). The results suggested that ZT can play a vital role in sustaining micronutrient availability due to decreased soil pH and the greater amount of organic matter compared to other tillage methods.

2011 ◽  
Vol 62 (11) ◽  
pp. 1002 ◽  
Author(s):  
Jeff Werth ◽  
David Thornby ◽  
Steve Walker

Glyphosate resistance will have a major impact on current cropping practices in glyphosate-resistant cotton systems. A framework for a risk assessment for weed species and management practices used in cropping systems with glyphosate-resistant cotton will aid decision making for resistance management. We developed this framework and then assessed the biological characteristics of 65 species and management practices from 50 cotton growers. This enabled us to predict the species most likely to evolve resistance, and the situations in which resistance is most likely to occur. Species with the highest resistance risk were Brachiaria eruciformis, Conyza bonariensis, Urochloa panicoides, Chloris virgata, Sonchus oleraceus and Echinochloa colona. The summer fallow and non-irrigated glyphosate-resistant cotton were the highest risk phases in the cropping system. When weed species and management practices were combined, C. bonariensis in summer fallow and other winter crops were at very high risk. S. oleraceus had very high risk in summer and winter fallow, as did C. virgata and E. colona in summer fallow. This study enables growers to identify potential resistance risks in the species present and management practices used on their farm, which will to facilitate a more targeted weed management approach to prevent development of glyphosate resistance.


Author(s):  
AKINJIDE MOSES AFOLABI ◽  
JOSEPH IKECHUKWU MUOGHALU ◽  
EZEKIEL DARE OLOWOLAJU ◽  
FATIMOH OZAVIZE ADEMOH

Objectives: This study investigates nutrients stock and some soil indices of agro-ecosystem soil as affected by monoculture cropping system (cacao plantation). This was with a view to provide comprehensive understanding of soil nutrient dynamics in the ecosystems due to their different management practices. Methods: The study was carried out in 0.063 ha sample plots, three each in natural forests and cacao plantations adjacent to each other. In each plot, five core soil samples were randomly collected at two depths (0–15 and 15–30 cm), bulked according to depth, air-dried, sieved through 2 mm sieve, and analyzed for soil physicochemical properties using standard methods. One-way analysis of variance was used to test significant mean differences of the soil properties among cacao plantation and natural forest at probability level (p≤0.05) at different soil depth. Results: The results showed that soil physical properties such as particle size distribution, moisture contents, and bulk density; chemical properties such as pH, exchangeable cation, organic carbon, organic matter, phosphorus, and sulfur from natural forest were higher than the soil properties in cacao plantation for both top and subsoil. Soil indices such as soil structural stability index, base saturation percentage, and sodium adsorption ratio were higher in natural forest ecosystem than the soil indices of cacao plantation. Conclusion: From this study, it can be concluded that long-term monoculture cropping system had significant effect on nutrients stock and soil indices. This subsequently might result in permanent soil degradation and productivity.


Author(s):  
Kavita . ◽  
V. S. Hooda ◽  
Rajbir Garg ◽  
Kavinder .

An ongoing field experiment established in 2012 at Agronomy Research Farm, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India was selected to evaluated the effect of three tillage practices (zero tillage, furrow irrigated raised bed system and conventional tillage with mouldboard plow ) and four weed management practices (W1: Atrazine (50% W.P.) at750 g/ha in maize and pinoxaden 50 g/ha + premix of metsulfuron and carfentrazone (Ally Express 50% DF) 25 g/ha + 0.2% NIS as post-emergence in wheat, W2: Tembotrione (Laudis 42% Sc @ 120 g/ha + S 1000 ml/ha (10-15 days/ 2-4 leaf stage) in maize and clodinafop 60 g/ha + metsulfuron 4 g/ha as post- emergence in wheat, W3: Two HW in maize (20 to 40 days) and wheat (30 to 50 days), W4: Weedy check in maize and wheat) on nutrient uptake and yield of wheat. Treatment was replicated thrice with spilt plot design. Plant samples were collected in the month of April, 2016 after the harvesting of wheat. Significantly higher yield of wheat was reported under FIRBS (66.1 qha-1) followed by zero tillage and under weedy check treatment as compared to other under different tillage and weed management practices. These results suggest that zero tillage and FIRBS along with the weedy check treatment results in higher wheat yield followed by maize.


Weed Science ◽  
1980 ◽  
Vol 28 (4) ◽  
pp. 445-451 ◽  
Author(s):  
R. D. William ◽  
M. Y. Chiang

In tropical and subtemperate regions of the world, farmers plant vegetables and other crops in a vast array of cropping systems that often involve more than one crop being grown on the same parcel of land in a year. Weed communities within each cropping system shift depending on physical and climatic factors and the specific crop and weed management practices employed. Modern weed management strategies involve combinations of crop production practices and specific weed control technologies intended to reduce weed competition, thereby shifting the competitive balance in favor of the crop. Weed research and, training efforts, therefore, must focus on the entire cropping system with emphasis on year-round and multi-year management of weed communities.


2005 ◽  
Vol 45 (1) ◽  
pp. 79 ◽  
Author(s):  
S. R. Walker ◽  
I. N. Taylor ◽  
G. Milne ◽  
V. A. Osten ◽  
Z. Hoque ◽  
...  

In dryland cotton cropping systems, the main weeds and effectiveness of management practices were identified, and the economic impact of weeds was estimated using information collected in a postal and a field survey of Southern Queensland and northern New South Wales. Forty-eight completed questionnaires were returned, and 32 paddocks were monitored in early and late summer for weed species and density. The main problem weeds were bladder ketmia (Hibiscus trionum), common sowthistle (Sonchus oleraceus), barnyard grasses (Echinochloa spp.), liverseed grass (Urochloa panicoides) and black bindweed (Fallopia convolvulus), but the relative importance of these differed with crops, fallows and crop rotations. The weed flora was diverse with 54 genera identified in the field survey. Control of weed growth in rotational crops and fallows depended largely on herbicides, particularly glyphosate in fallow and atrazine in sorghum, although effective control was not consistently achieved. Weed control in dryland cotton involved numerous combinations of selective herbicides, several non-selective herbicides, inter-row cultivation and some manual chipping. Despite this, residual weeds were found at 38–59% of initial densities in about 3-quarters of the survey paddocks. The on-farm financial costs of weeds ranged from $148 to 224/ha.year depending on the rotation, resulting in an estimated annual economic cost of $19.6 million. The approach of managing weed populations across the whole cropping system needs wider adoption to reduce the weed pressure in dryland cotton and the economic impact of weeds in the long term. Strategies that optimise herbicide performance and minimise return of weed seed to the soil are needed. Data from the surveys provide direction for research to improve weed management in this cropping system. The economic framework provides a valuable measure of evaluating likely future returns from technologies or weed management improvements.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


Author(s):  
B. Sandhya Rani ◽  
V. Chandrika ◽  
G. Prabhakara Reddy ◽  
P. Sudhakar ◽  
K.V. Nagamadhuri ◽  
...  

Background: Maize followed by summer pulses is the emerging cropping system in many places in India. Herbicides are the efficient tools for checking weed infestation and their usage is increasing throughout the globe due to increased labour cost and quick weed control. Some herbicides do not degrade quickly and may remain in the soil for weeks, months or years after application and may inhibit the growth of succeeding crops. Methods: Field experiment was conducted in a randomized block design (RBD) during rabi and summer seasons of 2017-18 and 2018-19 to know the residual effect of different herbicides applied in maize on succeeding greengram. Result: The present study revealed that lower density and dry weight of total weeds and higher yield attributes and yield was recorded with the practice of adopting two hand weedings at 15 and 30 DAS, which was however, at par with atrazine 1.0 kg ha-1 as PE fb one HW at 30 DAS, atrazine 1.0 kg ha-1 as PE fb topramezone 30 g ha-1 as PoE and atrazine 1.0 kg ha-1 as PE fb tembotrione 120 g ha-1 as PoE, without any significant disparity among them. Herbicides applied in maize did not alter statistically the enzyme activity and microbial count in the soil at harvest of succeeding greeengram. 


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Gosaye Eshetu ◽  
Yekedem Bimrew ◽  
Hassen Shifa

Field survey was conducted in south eastern Ethiopia to determine the disease intensity of chocolate spot and rust and to investigate the association of disease intensity (incidence and severity) with environmental factors and crop cultural practices. A total of 280 faba bean fields were surveyed in eight districts, and type of cropping system, weed management practices, crop growth stage, previous crop in the field, and sowing date were recorded. The associations of disease intensity with independent variables were evaluated using logistic regression model. Mean disease incidence of chocolate spot varied from 70.9 to 93.2% in most fields while percentage severity index (PSI) ranged from 10.5 to 47.1%. In a reduced multiple variable model, chocolate PSI ≤ 30% showed high probability of association with mixed cropping system, good weed management practices, late planting, and when faba bean was rotated with vegetables and cereals. The mean disease incidence of faba bean rust was varied from 23.6 to 78.2%, while the mean PSI of rust was varied from 4.8 to 37.9%. In Gasera, Dinsho, and Agarfa districts, poor weed management practices, fields planted in the month of July, and when previous crop was legume had a high probability of association to (>20) rust PSI in a multiple variable reduced model. In contrast, soil types, fertilizer applied, and fungicides sprayed were not associated with disease intensity. The present study has identified cropping system, planting date, previous crop, district, and weed management practices as important variables that influence faba bean chocolate spot and rust epidemics in diversified fields. Therefore, proper weeding management practices, late planting, crop rotation habit, and other related farm practices should be carried out to reduce chocolate spot and rust impact until resistant faba bean genotypes are developed and distributed to the area.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 841 ◽  
Author(s):  
Costanza Ceccanti ◽  
Marco Landi ◽  
Daniele Antichi ◽  
Lucia Guidi ◽  
Luigi Manfrini ◽  
...  

The sustainability of current farming systems has been questioned in the last decades, especially in terms of the environmental impact and mitigation of global warming. Also, the organic sector, which is supposed to impact less on the environment than other more intensive systems, is looking for innovative solutions to improve its environmental sustainability. Promisingly, the integration of organic management practices with conservation agriculture techniques may help to increase environmental sustainability of food production. However, little is known about the possible impact of conservation agriculture on the content of bioactive compounds in cash crops. For this reason, a two-year rotation experiment used 7 cash crops (4 leafy vegetables and 3 fruit crops) to compare integrated (INT), organic farming (ORG), and organic no-tillage (ORG+) systems to evaluate the possible influence of cropping systems on the nutritional/nutraceutical values of the obtained fruits and leafy vegetables. The results pointed out specific responses based on the species as well as the year of cultivation. However, cultivation with the ORG+ cropping system resulted in effective obtainment of fruits and vegetables with higher levels of bioactive compounds in several cases (11 out 16 observations). The ORG+ cropping system results are particularly promising for leafy vegetable cultivation, especially when ORG+ is carried out on a multi-year basis. Aware that the obtained data should be consolidated with longer-term experiments, we conclude that this dataset may represent a good starting point to support conservation agriculture systems as a possible sustainable strategy to obtain products with higher levels of bioactive compounds.


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 729-737 ◽  
Author(s):  
Thomas R. Butts ◽  
Bruno C. Vieira ◽  
Débora O. Latorre ◽  
Rodrigo Werle ◽  
Greg R. Kruger

AbstractWaterhemp [Amaranthus tuberculatus(Moq.) J. D. Sauer] is a troublesome weed occurring in cropping systems throughout the U.S. Midwest with an ability to rapidly evolve herbicide resistance that could be associated with competitive disadvantages. Little research has investigated the competitiveness of differentA. tuberculatuspopulations under similar environmental conditions. The objectives of this study were to evaluate: (1) the interspecific competitiveness of three herbicide-resistantA. tuberculatuspopulations (2,4-D and atrazine resistant [2A-R], glyphosate and protoporphyrinogen oxidase [PPO]-inhibitor resistant [GP-R], and 2,4-D, atrazine, glyphosate, and PPO-inhibitor susceptible [2AGP-S]) with soybean [Glycine max(L.) Merr.]; and (2) the density-dependent response of eachA. tuberculatuspopulation within a constant soybean population in a greenhouse environment.Amaranthus tuberculatuscompetitiveness with soybean was evaluated across five target weed densities of 0, 2, 4, 8, and 16 plants pot−1(equivalent to 0, 20, 40, 80, and 160 plants m−2) with 3 soybean plants pot−1(equivalent to 300,000 plants ha−1). At the R1 soybean harvest time, no difference in soybean biomass was observed acrossA. tuberculatuspopulations. AtA. tuberculatusdensities <8 plants pot−1, the 2AGP-S population had the greatest biomass and stem diameter per plant. At the R7 harvest time, the 2AGP-S population caused the greatest loss in soybean biomass and number of pods compared with the other populations at densities of <16 plants pot−1. The 2AGP-S population had greater early-season biomass accumulation and stem diameter compared with the otherA. tuberculatuspopulations, which resulted in greater late-season reduction in soybean biomass and number of pods. This research indicates there may be evidence of interspecific competitive fitness cost associated with the evolution of 2,4-D, atrazine, glyphosate, and PPO-inhibitor resistance inA. tuberculatus. Focus should be placed on effectively using cultural weed management practices to enhance crop competitiveness, especially early in the season, to increase suppression of herbicide-resistantA. tuberculatus.


Sign in / Sign up

Export Citation Format

Share Document