scholarly journals The Effect of Alkaline Treatment onto Physical, Thermal, Mechanical and Chemical Properties of Lemba Leaves Fibres as New Resources of Biomass

2020 ◽  
Vol 28 (4) ◽  
Author(s):  
Nur Aina Farhana Mat Nasir ◽  
Jamarosliza Jamaluddin ◽  
Zuraidah Zainudin ◽  
Mahirah Muhammad Busheri ◽  
Nadia Adrus ◽  
...  

The main purpose of this paper is to investigate the effect of alkaline treatment on the physical, thermal, mechanical and chemical properties of pristine lemba leaves fibres (LeLeFs). LeLeFs were treated with 6, 8, and 10 wt% sodium hydroxide (NaOH) solution at room temperature for 24 h. In order to determine the functional group presence after the alkaline treatment, LeLeFs were analyzed using Fourier Transform Infrared (FTIR) Spectroscopy. The density of LeLeFs treated with 10 wt% NaOH solution recorded the highest density with 1.168 g/cm³. Morphology study showed that the diameter of fibre reduced with the increment of NaOH concentration. The removal of lignin and hemicellulose could be observed in the thermogravimetric analysis (TGA). Alkaline treatment enhanced the tensile properties of fibre and 10 wt% alkaline treated fibre resulted in the highest tensile strength, modulus and elongation of the fibre at 511.10 MPa, 11.76 GPa and 3.69% respectively. Chemical resistance analysis found that the treated fibre had better chemical resistance compared to untreated fibre. Therefore, it is substantiated that alkaline treatment affects the properties of LeLeF.

2018 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Cokorda putri Kusuma kencanawati ◽  
I Ketut Gede Sugita ◽  
NPG Suardana ◽  
I Wayan Budiasa Suyasa

Makalah ini menganalisis pengaruh perlakukan alkali dan tanpa perlakukan alkali terhadap karakateristik fisik, morfologi dan sifat mekanik serat kulit buah pinang (areca Catechu L.). Selama ini pemanfaatan limbah pertanian belum dilakukan secara maksimal, sehingga dapat menimbulkan pencemaran terhadap lingkungan. Serat kulit buah pinang (Areca Husk Fiber/AHF) selama ini hanya dipergunakan sebagai bahan bakar biomassa dan media tanam sedangkan untuk pemanfaatan lain belum ada sama sekali. AHF diberi perlakukan NaOH 2,5%, 5%, 7,5% dan 10% dengan waktu perendaman 2 jam pada temperatur kamar, untuk mengetahui karakteristik fisik AHF maka dilakukan pengukuran panjang dan diameter serat, pengujian densitas, pengujian kadar air dan moisture sedangkan untuk mengetahui karakteristik mekanik dilakukan pengujian tarik serat tunggal sesuai dengan ASTM D 3379. Dari penelitian ini diketahui bahwa diameter AHF mengalami pengurangan diameter akibat perlakukan alkali, hal ini terkait dengan hilangnya kandungan lignin, pektin dan wax. Densitas AHF menurun dengan meningkatan prosentase NaOH bila dibandingkan dengan AHF tanpa perlakukan NaOH. Kekuatan tarik bervariasi dengan adanya perlakuan alkali.  Kekuatan tarik AHF tertinggi pada serat yang mengalami perlakukan NaOH 5% yaitu sebesar 165 Mpa dan kekuatan tarik terendah pada AHF dengan perlakuan Alkali 10% yaitu sebesar 137 MPa . This paper analyzes the effect of alkali and non-alkali treatments on the physical characteristics, morphology and mechanical properties of betel nut huks fiber (areca Catechu L.). the used of agricultural waste has not been done optimally, causing environmental pollution. Areca Husk Fiber (AHF) only used as biomass fuel and planting medium, while for the other uses it has not existed. AHF was given 2.5%, 5%, 7.5% and 10% NaOH treatment with 2 hours immersion at room temperature, to known the physical characteristics of AHF then measured the length and diameter of fiber, density test, water content and moisture test. Mechanical characteristics of single fiber tensile testing in accordance with ASTM D 3379. From this study that known the diameter of AHF has a reduction in diameter due to alkaline treatment, this is related to loss of lignin, pectin and wax content. The density of AHF decreases with the percentage increase of NaOH when compared with AHF without the treatment of NaOH. Tensile strength varies with alkaline treatment. The highest AHF tensile strength in treated fibers was 5% NaOH of 165 Mpa and lowest tensile strength in AHF with 10% Alkali treatment of 137 MPa.


Author(s):  
Mofeed A. Jaleel ◽  
Eilaf Z. Gurji

The Electrodeposition process has been used to substrate Ni-W alloy on low carbon steel by using ammonical citrate bath. The influence of deposition condition by variation of current density (0.04-0.2 A/cm2) and solution temperature (60-70 °C), on the mechanical and chemical properties such as (microhardness, wear resistance, residual stress and chemical resistance) was studied. Results show that the current efficiency has the major influence on the tungsten content in the alloys which reflected to the properties of the deposits.


2019 ◽  
Vol 23 ◽  
pp. 75-81
Author(s):  
Ponnusamy Senthil Kumar ◽  
G. Janet Joshiba

The discovery of carbon nanotubes is one of the remarkable achievement in the field of material science and it is a great advancement of Nanotechnology. A carbon nanotube is an expedient material used in several domains and paves way for the welfare of humans in many ways. Carbon nanotubes are nanosized tubes made from graphitic carbons and it is well known for its exclusive physical and chemical properties. The market demand for the nanotubes has increased progressively due to its size dependent, structure and mechanical properties. The carbon nanotubes possess high tensile strength and it is also found to be the durable fibre ever known. It is also found to possess exceptional electrical properties. The carbon nanotube composites have an excellent young’s modulus and higher tensile strength same as graphite carbon. This review plots the properties of carbon nanotubes and portrays the planning and properties of carbon nanotube composites. The wide application of carbon nanotube composites is also explained.


2011 ◽  
Vol 287-290 ◽  
pp. 294-297
Author(s):  
Cui Zhi Dong ◽  
Li Fang Zhang ◽  
Xiao Yan Wang ◽  
Ming Xi Zhang ◽  
Zhi Min Cui ◽  
...  

Because of the good photoelectric learning properties and chemical properties, CdTe nanocrystalline as an important Ⅱ-Ⅵ clan semiconductor materials has been used in LEDs, photonics, in aspects of materials and biomarker and so on. W/O microemulsion method has the peculiarity of tester simpleness, easy manipulation, room temperature react etc. In this paper CdTe nanoparticles was synthesized in CTAB/cyclohexane/isobutanol/water quatemary microemulsion system in alkaline condition and nitrogen. The morphology of the final products were characterized by X-ray power diffraction, transmission electron microscopy. according to the means, this paper researches the effect of surfactant contentration to morphology. The result is that the different morphology can be obtained through the different CTAB concentration. Finally, according to TEM chart, this paper infers the formation mechanism of the CdTe.


1987 ◽  
Vol 105 ◽  
Author(s):  
Takuji Goda ◽  
Hirotsugu Nagayama ◽  
Akihiro Hishinuma ◽  
Hideo Kawahara

AbstractA new coating process of silicon dioxide (SiO2) “LPD” process, has been developed recently. Silicon dioxide (SiO2) film can be deposited on any substrate at the room temperature by immersing in hexafluorosilicic acid (H2SiF6).In this study, physical and chemical properties of the “LPD- SiO2” film were investigated by using XPS, IR, ellipsometry, and etch rate measurement. The properties of this film deposited at the room temperature were almost the same as those of plasma CVD. The “LPD-SiO2” film without annealing was contained traces of F and OH. However, by annealing, F and OH were rapidly evaporated from the film and the film was getting densified.As the “LPD-SiO2” film deposited at the room temperature showed very good results of chemical etching rate and of step coverage, it is expected that it is possible to use this “LPD- SiO2” film in the wide range of industrial area.


2009 ◽  
Vol 83-86 ◽  
pp. 953-958
Author(s):  
Ching Yen Ho ◽  
Yu Hsiang Tsai ◽  
Mao Yu Wen

Nanometer-sized particles possess characteristic physical and chemical properties different from those of bulk materials due to an increase in surface-to-volume ratios as well as of confinement of electrons, excitons, and photons into small volumes. Therefore it is worthwhile to discuss the thermal behaviours of powders constituted by nanometer-sized particles. The heat transfer in the powder composed of nanoparticles is experimentally investigated in this paper. The understanding for thermal properties of the powder is advantageous to the advancement of the processing technologies such as laser cladding, laser sintering, powder metallurgy and its other applications. The powder is wrapped up in the slender tube made of insulating material. One end of the slender tube filled with powder is maintained at temperature 0°C and the other end is kept at room temperature. The temperature histories at two different locations in the slender tube are recorded using thermal couples. The results show that the thermal diffusivity in the powder composed of nanoparticles is larger than that in bulk material. The pressure on the Al powders enhances the rate of heat transport due to the increase of contact area for thermal conduction.


2008 ◽  
Vol 8 (6) ◽  
pp. 2793-2810 ◽  
Author(s):  
W. Zhong ◽  
N. J. Tang ◽  
C. T. Au ◽  
Y. W. Du

The recent observation of room temperature tunneling magnetoresistance (TMR) in half-metallic A2FeMoO6 (A = Ca, Sr, Ba) double perovskites, and their importance to the emerging field of spintronics has led to considerable effort being dedicated to detailed investigations of the physical and chemical properties of these materials. This article will present an review of our recent investigations covering the synthesis, structures, magnetic and transport properties of "bulrush-like" A2FeMoO6 (A = Sr, Ba). Utilizing the high shape anisotropy as well as the reactivity of A2FeMoO6 to water and a sonochemical technique, we managed to manipulate the properties of grain boundary barriers, and thus put forward a new approach for the enhancement of room temperature TMR. The magnetocaloric effects of A2FeMoO6 double perovskites will also be discussed.


2011 ◽  
Vol 142 ◽  
pp. 120-124
Author(s):  
Hong Chao Cui ◽  
De Cai Li ◽  
Peng Liu

The physical and chemical properties of nanofluorocarbon-based magnetic fluids are deeply affected by the introduction of fluorinated base liquid. In this paper, firstly we introduce the concept, composition and classification of nanofluorocarbon-based magnetic fluids, then we discuss the properties, preparation and structure of perfluoro polyethers (PFPE); afterwards we analyze the NMR spectrum to infer the structure contained in the polymer in detail and systematically, further verify the functional group of PFPE.


2015 ◽  
Vol 1107 ◽  
pp. 137-141
Author(s):  
Abbas Hasan Faris ◽  
Afidah Abdul Rahim ◽  
Mohamad Nasir Mohamad Ibrahim

The main objective of this research was to describe the thermal and chemical characteristics of lignopolyols. Lignin was extracted from oil palm empty fruit bunch after kraft pulping process. Oxypropylation reaction was achieved by reacting kraft lignin with propylene oxide under alkaline conditions at room temperature. The physical and chemical properties of lignopolyols were evaluated by FTIR, NMR, GPC, TGA, and DSC. Lignopolyol exhibited higher chemical activity than kraft lignin. The polyols used as precursors in biomass-based wood adhesives preparation demonstrated promising results. Keywords: kraft lignin, lignopolyol, oxypropylation, NMR spectroscopy, DSC


Sign in / Sign up

Export Citation Format

Share Document