Influence of the Surfactant on the CdTe Nanomaterials Morphology

2011 ◽  
Vol 287-290 ◽  
pp. 294-297
Author(s):  
Cui Zhi Dong ◽  
Li Fang Zhang ◽  
Xiao Yan Wang ◽  
Ming Xi Zhang ◽  
Zhi Min Cui ◽  
...  

Because of the good photoelectric learning properties and chemical properties, CdTe nanocrystalline as an important Ⅱ-Ⅵ clan semiconductor materials has been used in LEDs, photonics, in aspects of materials and biomarker and so on. W/O microemulsion method has the peculiarity of tester simpleness, easy manipulation, room temperature react etc. In this paper CdTe nanoparticles was synthesized in CTAB/cyclohexane/isobutanol/water quatemary microemulsion system in alkaline condition and nitrogen. The morphology of the final products were characterized by X-ray power diffraction, transmission electron microscopy. according to the means, this paper researches the effect of surfactant contentration to morphology. The result is that the different morphology can be obtained through the different CTAB concentration. Finally, according to TEM chart, this paper infers the formation mechanism of the CdTe.

2011 ◽  
Vol 55-57 ◽  
pp. 1506-1510 ◽  
Author(s):  
Jing Wei ◽  
Xin Tan ◽  
Tao Yu ◽  
Lin Zhao

A series of Y/TiO2nanoparticles (NPs) were synthesized via sol-gel method. The crystal structures, morphologies and chemical properties were characterized using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). We investigated the effects of different doping amounts of Y on the reaction of CO2photoreduction. The results shown that 0.1 wt.%Y/TiO2(0.1YT) performed the highest photocatalytic activity, which yielded 384.62 µmol/g∙cat. formaldehyde after 6 h of UV illumination.


2002 ◽  
Vol 01 (05n06) ◽  
pp. 581-585
Author(s):  
SONG JA JO ◽  
YOUNG SOO KANG

Semiconductor CdTe nanoparticles were synthesized by the γ-irradiation of Cd ion complex at room temperature. Cd-olate complex was reacted with aqueous NaHTe solution. The products were investigated by X-ray Powder Diffraction (XRD) and Transmission Electron Microscopy (TEM). The optical properties of CdTe were investigated with UV-vis and photoluminescence (PL) spectra.


2013 ◽  
Vol 652-654 ◽  
pp. 215-218 ◽  
Author(s):  
Cui Zhi Dong ◽  
Li Fang Zhang ◽  
Shuang Chen ◽  
Ming Xi Zhang ◽  
Li Feng ◽  
...  

CdSe nanocrystalline is an important Ⅱ - Ⅵ clan semiconductor materials, In this paper the hollow structure CdSe nanoparticles was systhesised in CTAB/cyclohexane/isobutanol/water quatemary microemulsion system. The morphology of the final products were characterized by X-ray power diffraction, transmission electron microscopy and EDS. Results of XRD and EDS revealed that nano-crystals were the mixture of CdSe, TEM images shows nanoball, nanotube and bamboo-like nanotube are hollow structure. This paper proves that the hollow structure CdSe can be obtained in the proper conditons.


2010 ◽  
Vol 64 (1) ◽  
Author(s):  
Yunfei Bi ◽  
Shuangqin Zeng ◽  
Dadong Li ◽  
Hong Nie

AbstractAmmonium dioxothiotungstate was synthesized using different tungsten sources and characterized in detail by powder X-ray diffraction, energy dispersive X-ray spectrometry, transmission electron microscopy, nitrogen adsorption, and temperature-programmed sulfidation. It was found that tungsten oxide nanobelts are superior to ammonium metatungstate as tungsten source for the synthesis of ammonium dioxothiotungstate due to a time-consuming aging step being excluded from the synthesis route. Moreover, detailed characteristic data reveal that, when tungsten oxide nanobelts are used, the physical and chemical properties of the resulting ammonium dioxothiotungstate including particles size, specific surface area, and sulfidation pattern were improved. Also, the hydrodesulfurization measurements showed higher catalytic activity and balanced selectivity of the resulting ammonium dioxothiotungstate.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Patrice Berthod

Four alloys based on niobium and containing about 33wt.%Cr, 0.4wt.C and, in atomic content equivalent to the carbon one, Ta, Ti, Hf or Zr, were elaborated by classical foundry under inert atmosphere. Their as-cast microstructures were characterized by X-ray diffraction, electron microscopy, energy dispersion spectrometry and while their room temperature hardness was specified by Vickers indentation. The microstructures are in the four cases composed of a dendritic Nb-based solid solution and of an interdendritic NbCr2 Laves phase. Despite the MC-former behavior of Ta, Ti, Hf and Zr usually observed in nickel or cobalt-based alloys, none of the four alloys contain MC carbides. Carbon is essentially visible as graphite flakes. These alloys are brittle at room temperature and hard to machine. Indentation shows that the Vickers hardness is very high, close to 1000HV10kg. Indentation lead to crack propagation through the niobium phase and the Laves areas. Obviously no niobium-based alloys microstructurally similar to high performance MC-strengthened nickel-based and cobalt-based can be expected. However the high temperature mechanical and chemical properties of these alloys remain to be investigated. 


2018 ◽  
Vol 21 (2) ◽  
pp. 127-131
Author(s):  
S. Rumh. Kadhim ◽  
Reihan Etefagh ◽  
H. Arabi

In this paper, pure and impure nanopowders of Li(Li0.021Mn0.54Ni0.125Co0.125)O2 were prepared with different percentages (x=0.02%, 0.05%, 0.075%, 0.10%) of Zn impurity by sol-gel method, and the effect of different percentages were investigated on the structural, physical and chemical properties of the samples. These properties of samples characterized by X-ray diffraction (XRD), field-scattering microscopy (FESEM), X-ray energy spectroscopy (EDS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), infrared spectroscopy (FTIR), and the results of characterization were investigation. All the reflection peaks indicate that the samples have standard α-NaFeO2 layered structure with the space group R3m, except for the super lattice ordering between 22°-25°.The FESEM images have shown that these nanoparticles have Hexagonal structures for doped and undoped nanopowders. The particle size of nanopowders in the range of 30-80 nm the chemical analysis of EDS has proven the presence of Zn in the samples. TG /DTA measurements showed weight loss in pure and impure of nanopowders. In infrared spectroscopy (FTIR), the connection bonds and chemical elements used in these nanopowders have been investigated.


2018 ◽  
Vol 43 ◽  
pp. 01024
Author(s):  
Rudy Syah Putra ◽  
Wahyu Sriyono ◽  
Mutiara Ayu ◽  
Reina Intan Kusumawati

The performance of treated kaolinite obtained from three types treatment that was calcination at 600 °C (K600), 800 °C (K800) and acid treated of K800 (KA800). All catalysts were tested for their catalytic activity via electrolysis process through (trans)esterification of soy bean oil at room temperature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) was performed to characterize the microstructures and chemical properties of as-prepared treated kaolinite material. The effect of catalyst amount (2, 3 and 5 wt.%) was evaluated for the conversion of FAME from soybean oil and followed by GC-MS, determining of the purity of FAME at different operation variables. The result showed that for KA800 as catalyst, the FAME conversion was the highest as well as 18,85% at 3 wt.% catalyst of catalyst loading in the mixture, respectively.


Author(s):  
O. Popoola ◽  
A.H. Heuer ◽  
P. Pirouz

The addition of fibres or particles (TiB2, SiC etc.) into TiAl intermetallic alloys could increase their toughness without compromising their good high temperature mechanical and chemical properties. This paper briefly discribes the microstructure developed by a TiAl/TiB2 composite material fabricated with the XD™ process and forged at 960°C.The specimens for transmission electron microscopy (TEM) were prepared in the usual way (i.e. diamond polishing and argon ion beam thinning) and examined on a JEOL 4000EX for microstucture and on a Philips 400T equipped with a SiLi detector for microanalyses.The matrix was predominantly γ (TiAl with L10 structure) and α2(TisAl with DO 19 structure) phases with various morphologies shown in figure 1.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1141
Author(s):  
Georgia Basina ◽  
Hafsa Khurshid ◽  
Nikolaos Tzitzios ◽  
George Hadjipanayis ◽  
Vasileios Tzitzios

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids’ surface functionalization in a nonpolar solvent.


Sign in / Sign up

Export Citation Format

Share Document