Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques

<em>Abstract</em>.—Ecological stoichiometry refers to the relative availability of elements in ecosystems as both an influence upon and result of ecological interactions. Nutrient ratios have long been analyzed in primary producers, but their application to animals is more recent. Here, we summarize the ecological stoichiometry framework and highlight three key contexts in stream fish ecology: body stoichiometry, dietary stoichiometry, and roles in ecosystem nutrient cycling. Elemental demands for growth depend directly upon the stoichiometry of carbon and nutrients in body tissues. Body stoichiometry varies widely among the dozens of stream fish species for which data are available and exhibits some phylogenetic and size-based patterns. Due to the variety of foods consumed by stream fishes, the stoichiometry of their diets also varies widely. Consuming foods with high carbon:nutrient ratios can produce phosphorus-limited growth in algivores and potentially in insectivores as well. These expectations contrast with the prevailing belief that energy intake is the key nutritional control on growth of most fishes. Ingested nutrients that are not incorporated into body tissues must be defecated or excreted. These waste products can be a critical component of ecosystem nutrient cycles and offer the opportunity for species identity to affect ecosystem functioning. We argue that ecological stoichiometry provides an integrative framework for merging perspectives across individual, population, community, and ecosystem levels. Broader application of this approach to stream fishes will offer particular insight into consumer–resource interactions and ecosystem dynamics.

<em>Abstract</em>.—Migratory fishes are common in freshwaters throughout the world and can fundamentally alter recipient ecosystems. We describe different types of fish migrations and consider their importance from the perspective of ecosystem subsidies—that is, landscape-scale flows of energy, materials, and organisms that are important in driving local food web and ecosystem dynamics. We distinguish between two general categories of subsidies, which we term here material subsidies and process subsidies. Material subsidies are the transfer of energy, nutrients, and other resources resulting in direct changes in resource pools within ecosystems. We posit that material subsidies occur under only a subset of life history strategies and ecological settings, and the potential for migratory fish to represent major material subsidies is greatest when (1) the biomass of migrants is high relative to recipient ecosystem size, (2) the availability of nutrients and energy is low in the recipient ecosystem (i.e., oligotrophic), and (3) there are effective mechanisms for both liberating nutrients and energy from migratory fishes and retaining those materials within the food web of the recipient ecosystem. Thus, anadromous semelparous Pacific salmon <em>Oncorhynchus </em>spp. with en masse programmed senescence in oligotrophic Pacific Northwest streams can be large material subsidies. In contrast, process subsidies arise from feeding or other activities of migratory species that directly affect process rates within recipient ecosystems. For example, the physical and chemical effects of grazing and sediment-feeding fishes such as prochilodontids, as well as seed dispersal by large-bodied frugivorous characins, represent potentially key process subsidies by migratory fishes in some of the great rivers of South America. We speculate that process subsidies are more widespread than material subsidies from migratory stream fishes because they are independent of the type of migration patterns, life history, and distance traveled. Nevertheless, the magnitude of process subsidies is likely to be greatest under a specific subset of ecological conditions, which can differ from those where material subsidies might be most important. In addition to migrant biomass, the potential for migratory fish to represent strong process subsidies is regulated by migrant interaction strength and the degree to which a migratory species is functionally unique in a particular ecological setting. Unlike material subsidies, which require high migrant biomass as conveyor belts of materials, migratory fishes can be crucial process subsidies, even when migrant biomass is low, if they are functionally unique and strong interactors. We provide specific examples of these different types of subsidies and outline key directions of research for furthering our understanding of the functional significance of migratory stream fishes. Our aim is to highlight the diversity of subsidies provided by migratory fishes in order to foster a more comprehensive perspective on fishes as essential components of riverine ecosystems.


<em>Abstract</em>.—Stream fishes carry out their life histories across broad spatial and temporal scales, leading to spatially structured populations. Therefore, incorporating metapopulation dynamics into models of stream fish populations may improve our ability to understand mechanisms regulating them. First, we reviewed empirical research on metapopulation dynamics in the stream fish ecology literature and found 31 papers that used the metapopulation framework. The majority of papers applied no specific metapopulation model, or included space only implicitly. Although parameterization of spatially realistic models is challenging, we suggest that stream fish ecologists should incorporate space into models and recognize that metapopulation types may change across scales. Second, we considered metacommunity theory, which addresses how trade-offs among dispersal, environmental heterogeneity, and biotic interactions structure communities across spatial scales. There are no explicit tests of metacommunity theory using stream fishes to date, so we used data from our research in a Great Plains stream to test the utility of these paradigms. We found that this plains fish metacommunity was structured mainly by spatial factors related to dispersal opportunity and, to a lesser extent, by environmental heterogeneity. Currently, metacommunity models are more heuristic than predictive. Therefore, we propose that future stream fish metacommunity research should focus on developing testable hypotheses that incorporate stream fish life history attributes, and seasonal environmental variability, across spatial scales. This emerging body of research is likely to be valuable not only for basic stream fish ecological research, but also multispecies conservation and management.


2021 ◽  
Vol 25 (02) ◽  
pp. 433-448
Author(s):  
Bruno Eleres Soares ◽  
◽  
Gabriel Nakamura ◽  
◽  

Neotropical stream fishes exhibit a complex evolutionary history and encompass both old and recent lineages. Patterns of species diversity of stream fishes are relatively well-studied for Neotropical streams, but not for patterns of clade distribution and historical factors that structure these assemblages, which are the main interests of phylogenetic ecology. Understanding the evolutionary context of communities provides important insights into large-scale mechanisms that structure them. This review aims to: (i) discuss the main concepts of phylogenetic ecology and its application to Neotropical stream fishes; and (ii) highlight the main methods applied in this background. The first section presents the main phylogenetic hypothesis of fishes and discusses how their gaps in Neotropical stream fishes hinder phylogenetic ecology. Afterward, we discuss the main concepts of phylogenetic ecology (phylogenetic signal, community phylogenetic structure, and phylogenetic diversity), as well as gaps and potential applications of these concepts and tools to understand Neotropical stream fish assemblages. The second section introduces the main methods to address the phylogenetic ecology, including a standardized procedure to edit fish phylogenetic trees, comparative methods, and indices and analytical tools to understand community structure and conservation importance. Finally, we discuss the perspectives to the next years to better understand the Neotropical stream fish assemblages in the light of past and current historical processes.


2020 ◽  
Author(s):  
Katherine M. Smith ◽  
Skyler Kern ◽  
Peter E. Hamlington ◽  
Marco Zavatarelli ◽  
Nadia Pinardi ◽  
...  

Abstract. We present a newly developed reduced-order biogeochemical flux model that is complex and flexible enough to capture open-ocean ecosystem dynamics, but reduced enough to incorporate into highly resolved numerical simulations with limited additional computational cost. The reduced-order model, which is derived from the full 56 state variable Biogeochemical Flux Model (BFM56; Vichi et al. (2007)), follows a biological and chemical functional group approach and allows for the development of critical non-Redfield nutrient ratios. Matter is expressed in units of carbon, nitrogen, and phosphate, following techniques used in more complex models. To reduce the overall computational cost and to focus on open-ocean conditions, the reduced model eliminates certain processes, such as benthic, silicate, and iron influences, and parameterizes others, such as the bacterial loop. The model explicitly tracks 17 state variables, divided into phytoplankton, zooplankton, dissolved organic matter, particulate organic matter, and nutrient groups. It is correspondingly called the Biogeochemical Flux Model 17 (BFM17). After providing a detailed description of BFM17, we couple it with the one-dimensional Princeton Ocean Model (POM) for validation using observational data from the Sargasso Sea. Results show good agreement with the observational data and with corresponding results from BFM56, including the ability to capture the subsurface chlorophyll maximum and bloom intensity. In comparison to previous reduced-order models of similar size, BFM17 provides improved correlations between model output and field data, indicating that significant improvements in the reproduction of in situ data can be achieved with a low number of variables, while maintaining the functional group approach.


<em>Abstract</em>.—Community ecologists face the challenge of summarizing considerable amounts of information regarding species distributions and environmental conditions. Often, this challenge is met through the use of multivariate statistical approaches. Stream fish community ecologists, much like the broader ecological community, appear to favor the use of ordination methods over clustering approaches. One potential reason is due to the development of various tools to help us determine the interpretability or “significance” of ordination axes, whereas ecologists appear unfamiliar with the comparable tools available for examining cluster analysis. We use fish abundance data from two river systems to demonstrate several of these approaches. We demonstrate how the methods may be used to determine the relative strength of groups of sampling locations and species assemblages relative to the background variability. We contrast the methods to demonstrate their relative merits, both advantages and disadvantages, in studies commonly conducted by stream ecologists.


1994 ◽  
Vol 51 (11) ◽  
pp. 2626-2637 ◽  
Author(s):  
Charles Gowan ◽  
Michael K. Young ◽  
Kurt D. Fausch ◽  
Stephen C. Riley

Gerking (1959. Biol. Rev. 34: 221–242) proposed a theory about the restricted movement of stream fishes that may be considered a paradigm in salmonid biology. The restricted movement paradigm (our term) hold that resident stream salmonids are sedentary. Numerous studies have supported the restricted movement paradigm, but nearly all have relied on the recapture of marked fish from the same areas in which they were released, an approach we believe is biased against detecting movement. We found substantial movement of trout in streams in Colorado and Wyoming using two-way weirs and radio telemetry. A review of the research on Lawrence Creek, Wisconsin, also showed that movement was important in the response of the trout population to habitat enhancement. Movement of resident stream fish has profound implications for research (e.g., measuring production and habitat models) and management (e.g., habitat enhancement, special regulations, and stocking hatchery fish). Methods capable of detecting fish movement could be incorporated into many studies to assess its importance in systems of interest. New theories and experiments are needed to understand the mechanisms that cause stream salmonids to move.


1995 ◽  
Vol 52 (7) ◽  
pp. 1487-1498 ◽  
Author(s):  
Brian M. Wood ◽  
Mark B. Bain

Microhabitat use and body morphology were compared among 15 warmwater stream fishes from the Alabama River (Alabama, U.S.A.) watershed. Morphological variation among separate populations of a species was detected in 14 of the 15 species, indicating that populations should be separated in analyses among species. Comparison of morphological variation between microhabitat generalist and specialist species suggested that all species may vary in morphology relative to their environment. Regression analysis showed that within two families, Cyprinidae and Percidae, morphology was related to specific microhabitat variables. In the Centrarchidae, morphology was not related to any microhabitat variables. Morphological differences among the species occurred along gradients that were similar to gradients of habitat utilization, indicating that within a family, species widely separated in microhabitat use were morphologically different and species using similar microhabitats were similar in morphology. Our results suggest that patterns of morphological variation correspond to properties of the available habitat for warmwater stream fish species.


<em>Abstract</em>.—Stream fish assemblages are influenced indirectly by natural and anthropogenic landscape features acting through intermediate factors like flow and temperature regimes, water quality, and physical habitat. These relationships affect distributions and abundances of individual species and also frame potential interactions among different types of fishes. This hierarchical influence of environmental factors, also known as the landscape perspective, is a widely accepted view of fluvial systems. However, few studies have attempted to quantify the complex mechanistic relationships among landscape variables, intermediate factors, and fish, a gap due partially to limitations of traditional analytical techniques for devolving such relationships. Using covariance structure analysis (CSA), we attempt to quantify the influence of natural and anthropogenic land uses on stream fish assemblages through indirect effects on fluvial physical habitat, including descriptors of habitat complexity, flow stability, and channel size, for 46 streams of southeastern Michigan. CSA was selected for this investigation because of its ability to quantify indirect effects of variables through intermediate factors and to account for intercorrelations among related measures. For analysis, fish assemblages were summarized by their richness and diversity and also according to functional groups that included trophic guilds and preferences for stream size, substrate, and geomorphological units, such as riffles and pools. Our analysis showed that, when acting through habitat factors, assemblages were more strongly influenced by natural landscape features, including catchment area and geology, than by anthropogenic land uses of our study region. Further, the analyses revealed that different aspects of fish assemblages varied with different habitat variables. While diversity and richness increased with habitat complexity and channel size, numbers of carnivores decreased with flow stability, possibly due to the link between flow and stream temperature regimes of our study region. Diversity and richness, however, were not affected by human land uses. Numbers of invertivores, fish preferring fine substrate, and fish preferring pool/ run habitat all increased with agriculture while numbers of detritivores increased with both agriculture and urban land use. These results emphasize complex effects of landscape features on stream fishes through intermediate factors and underscore the importance of understanding the varied response of different aspects of fish assemblages to environmental influences for improved conservation and restoration opportunities.


<em>Abstract</em>.— In 1985, at the annual meeting of the American Society of Ichthyologists and Herpetologists in Knoxville, Tennessee, the symposium “Community and Evolutionary Ecology of North American Stream Fishes,” organized by W. J. Matthews and D. C. Heins, resulted in the 1987 publication of a 30-paper volume. Main themes included conceptual models of life history, zoogeography, or community dynamics; habitat use; responses to stress or to flooding; predator effects; effects of grazing fishes; ecomorphology, morphological plasticity, niche packing, or rarity; anthropogenic changes in fish faunas; life history variation or tactics; and genetic variation or divergence. Numerous papers from that symposium were influential on future research in stream fish ecology. As of 1985, many approaches or techniques now in common use did not exist or were barely used by stream fish ecologists, including gene sequencing, geographic information systems, the Internet, “landscape ecology,” “metapopulations,” “macroecology,” and “riverscapes,” and global warming was not yet a household word. Since the 1985 symposium, there have been two important international meetings of fish ecologists in Spain, organized by Javier Lobon-Cervia. The current volume compliments these efforts by attempting to synthesize advances in the field of stream fish community ecology. Since the 1985 symposium, fish ecologists have adopted many new approaches, including more large-scale and long-term surveys, stable isotopes, and ecological stoichiometry, among others, and linkages among habitat patches, fish effects in stream ecosystems, and effects of climate change are a major focus. This volume from the 2008 symposium includes 24 papers that document progress in stream fish ecology since the 1985 symposium, some of which take new theoretical and empirical approaches to address questions that were unasked or unanswerable two decades ago.


Sign in / Sign up

Export Citation Format

Share Document