scholarly journals Modeling and Analysis for Surface roughness in Machining EN-31 steel using Response Surface Methodology

Author(s):  
L B Abhang ◽  
M Hameedullah

This paper utilizes the regression modeling in turning process of En-31 steel using response surface methodology (RSM) with factorial design of experiments. A first-order and second-order surface roughness predicting models were developed by using the experimental data and analysis of the relationship between the cutting conditions and response (surface roughness). In the development of predictive models, cutting parameters of cutting velocity, feed rate, depth of cut, tool nose radius and concentration of lubricants were considered as model variables, surface roughness were considered as response variable. Further, the analysis of variance (ANOVA) was used to analyze the influence of process parameters and their interaction during machining. From the analysis, it is observed that feed rate is the most significant factor on the surface roughness followed by cutting speed and depth of cut at 95% confidence level. Tool nose radius and concentration of lubricants seem to be statistically less significant at 95% confidence level. Furthermore, the interaction of cutting velocity/feed rate, cutting velocity/ nose radius and depth of cut/nose radius were found to be statistically significant on the surface finish because their p-values are smaller than 5%. The predicted surface roughness values of the samples have been found to lie close to that of the experimentally observed values.

Author(s):  
Christopher Okechukwu Izelu ◽  
Samuel Chike Eze

This paper describes an aspect of a set of turning experiments performed in attempt to model, predict and optimize the machining induced vibration and surface roughness as functions of the machining, tool and work-piece variables during hard turning of 41Cr4 alloy special steel, with standard cutting tool, on a conventional lathe. Amongst others, the input variables of interest include the depth of cut, feed rate and tool nose radius. The response surface methodology, based on central composite design of experiment, was adopted, with analysis performed in Design Expert 9 software environment. Quadratic regression models were suggested, and proved significant by an analysis of variance, for the machining induced vibration of the cutting tool and surface roughness of the work-piece. They also have capability of being used for prediction within limits. Analysis of variance also showed the depth of cut, feed rate and tool nose radius have significant effect on the machining induced vibration and surface roughness. Whereas the depth of cut has dominant effect on the machining induced vibration, the tool nose radius has dominant effect on the surface roughness. The optimum setting of the depth of cut of 1.33095 mm, feed rate of 0.168695 mm/rev, and the tool nose radius of 1.71718 mm is required to minimize the machining induced vibration at 0.08 mm/s2 and surface roughness at 6.056 μmm with a desirability of 0.830.


2012 ◽  
Vol 445 ◽  
pp. 90-95
Author(s):  
Hamed Barghikar ◽  
Amin Poursafar ◽  
Abbas Amrollahi

The surface roughness model in the turning of 34CrMo4 steel was developed in terms of cutting speed, feed rate and depth of cut and tool nose radius using response surface methodology. Machining tests were carried out using several tools with several tool radius under different cutting conditions. The roughness equations of cutting tools when machining the steels were achieved by using the experimental data. The results are presented in terms of mean values and confidence levels.The established equation and graphs show that the feed rate and cutting speed were found to be main influencing factor on the surface roughness. It increased with increasing the feed rate and depth of cut, but decreased with increasing the cutting speed, respectively. The variance analysis for the second-order model shows that the interaction terms and the square terms were statistically insignificant. However, it could be seen that the first-order affect of feed rate was significant while cutting speed and depth of cut was insignificant.The predicted surface roughness model of the samples was found to lie close to that of the experimentally observed ones with 95% confident intervals.


Author(s):  
Neelesh Ku. Sahu ◽  
A. B. Andhare

Surface roughness is an important surface integrity parameter for difficult to cut alloys such as Titanium alloys (Ti-6Al-4V). In the present work, initially a mathematical model is developed for predicting surface roughness for turning operation using Response Surface Methodology (RSM). Later, a recently developed advanced optimization algorithm named as Teaching Learning Based Optimization (TLBO) is used for further parameter optimization of the equation developed using RSM. The design of experiments was performed using central composite design (CCD). Analysis of variance (ANOVA) demonstrated the significant and non-significant parameters as well as validity of predicted model. RSM describes the effect of main and mixed (interaction) variables on the surface roughness of titanium alloys. RSM analysis over experimental results showed that surface roughness decreased as cutting speed increased whereas it increased with increase in feed rate. Depth of cut had no effect on surface roughness. By comparing the predicted and measured values of surface roughness the maximum error was found to be 7.447 %. It indicates that the developed model can be effectively used to predict the surface roughness. Further optimization of the roughness equation was carried out by TLBO method. It gave minimum surface roughness as 0.3120 μm at the cutting speed of 1704 RPM (171.217 m/min), feed rate of 55.6 mm/min (.033 mm/rev) and depth of cut of 0.7 mm. These results were confirmed by confirmation experiment and were better than that of RSM.


2018 ◽  
Vol 5 ◽  
pp. 5 ◽  
Author(s):  
Pralhad B. Patole ◽  
Vivek V. Kulkarni

This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.


2015 ◽  
Vol 761 ◽  
pp. 267-272
Author(s):  
Basim A. Khidhir ◽  
Ayad F. Shahab ◽  
Sadiq E. Abdullah ◽  
Barzan A. Saeed

Decreasing the effect of temperature, surface roughness and vibration amplitude during turning process will improve machinability. Mathematical model has been developed to predict responses of the surface roughness, temperature and vibration in relation to machining parameters such as the cutting speed, feed rate, and depth of cut. The Box-Behnken First order and second-order response surface methodology was employed to create a mathematical model, and the adequacy of the model was verified using analysis of variance. The experiments were conducted on aluminium 6061 by cemented carbide. The direct and interaction effect of the machining parameters with responses were analyzed. It was found that the feed rate, cutting speed, and depth of cut played a major role on the responses, such as the surface roughness and temperature when machining mild steel AISI 1018. This analysis helped to select the process parameters to improve machinability, which reduces cost and time of the turning process.


2020 ◽  
Vol 5 (6) ◽  
pp. 683-688
Author(s):  
Ky Hong Le

In this paper, a study on surface roughness model when hole turning SAE 420 steel has been done. This study has been presented with three main contents. The first content is to determine the influence of some parameters on the surface roughness. The second content is to build a quadratic model showing the relationship between surface roughness with cutting velocity, depth of cut, feed rate and nose radius. The third content is to evaluate the accuracy of surface roughness model by comparing the roughness value when estimating and roughness value when testing. The development directions for further studies are also mentioned in this study.


2016 ◽  
Vol 854 ◽  
pp. 45-51
Author(s):  
S. Nandhakumar ◽  
R. Vijayakumar ◽  
Senthil Padmavathy ◽  
N. Nagasundaram

Design of Experiments is employed to study the stimulus of cutting parameters such as feed rate, spindle speed, depth of cut in the turning operation of AISI-310 and optimizing the value of those parameters for getting the higher material removal rate (MRR) and minimal surface roughness. A prediction model has been developed by using the above influencing parameters. For the purpose of parameters optimization we investigate the parameters using Response Surface Methodology (RSM). It is shown that feed rate is the main parameter in influencing the surface roughness, which is being followed by spindle speed and depth of cut. It is found that surface roughness and feed rate were directly proportional to each other for some extent. The confirmation tests were carried out to with the optimum set of parameters and are verified with test results. The comparison of above two results were found to be good with maximum error within 5% on comparing it with the predicted model.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


2014 ◽  
Vol 984-985 ◽  
pp. 118-123 ◽  
Author(s):  
S. Periyasamy ◽  
M. Aravind ◽  
D. Vivek ◽  
K.S. Amirthagadeswaran

In this study, the response surface methodology was used to optimize the process parameters of constant speed horizontal spindle surface grinding. The experiments were conducted based on the design expert software. The surface roughness characteristics were investigated in AISI 1080 steel plates using A60V5V grinding wheels. The optimum parameters for minimum surface roughness were found using Design Expert software. The parameters for a particular surface roughness value can also be determined using the results of this experiment. This results shows that feed has a greater effect on surface roughness and feed has medium effect on surface roughness. While dressing depth of cut has a very minimal effect on surface roughness.


Sign in / Sign up

Export Citation Format

Share Document