scholarly journals Experimental investigation of turning operation using carbide inserts

Author(s):  
V. R. Kagade ◽  
R. R. Deshmukh

This paper presents an investigation on the optimisation and the effect of cutting parameters on multiple performance characteristics (work piece surface roughness, spindle load) obtained by turning operations. A CNMG 09 03 08-PF carbide insert as tool and the HCHC steel as work piece material were used in experiments. The work piece material was machined under different settings of feed rate, depth of cut, cutting speed on a CNC lathe model-TL1 (HAAS). The results showed that cutting speed and feed rate were the dominant variables on multiple cutting performance characteristics. An optimum parameter combination was obtained by using experimental analysis.

2009 ◽  
Vol 626-627 ◽  
pp. 387-392 ◽  
Author(s):  
L.T. Yan ◽  
Song Mei Yuan ◽  
Qiang Liu

The cutting performance (tool wear, surface roughness of machined work-piece and chip formation)of wet, dry and Minimum Quantity Lubrication (MQL) machining when milling of high strength steel (PCrNi2Mo) using cemented carbide tools under different (cutting speed, depth of cut, feed rate) was analyzed. The experimental results showed that as the cutting speed, depth of cut and feed rate changed, MQL conditions provided the lowest flank wear and the highest surface quality. Chip formation produced under MQL conditions become more favorable in terms of color and shape. The results obtained prove the potential of using MQL technique in the milling process of high strength steel (PCrNi2Mo) for high cutting speed, feed rate and depth of cut.


Author(s):  
M. M. Reddy ◽  
N. S. Reddy ◽  
J. N. Evan

Past two decades, the usage of ceramic tools has increased especially in milling and turning process. These advanced ceramic tools have good characteristics that are capable in maintaining high hardness in temperatures and also wears much slower when compared to carbide tools. With limited data available on the tool itself, research is to be done on these advance ceramic tools. The main purpose of this research project is to determine the cutting parameters affecting the cutting temperature and cutting force. The cutting parameters are cutting speed, depth of cut and feed rate. Silicon Nitride is chosen as the tool and Steel AISI4140 is chosen as the work piece. Analysis is conducted through Box-Behnken method with 3 levels, 3 factors and 2 responses. The regression model for cutting temperature and cutting force responses are identified. Analysis of Variance (ANOVA) is done to determine the effect of the cutting parameters and their contribution towards the cutting temperature and cutting force response. It is found that feed rate has the most influence on cutting temperature and force. The optimal cutting parameters that produce the lowest cutting temperature and lowest cutting force are also obtained.


2018 ◽  
Vol 12 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Gokhan Basar ◽  
Funda Kahraman

In this study, the effect of cutting parameters such as the depth of cut, feed rate, cutting speed and the number of inserts on surface roughness were investigated in the milling of the AISI 4140 steel. The optimal control factors for surface quality were detected by using the Taguchi technique. Experimental trials were designed according to the Taguchi L18 (21x33) orthogonal array. The statistical effects of control factors on surface roughness have been established by using the analysis of variance (ANOVA). Optimal cutting parameters were obtained by using the S/N ratio values. The ANOVA results showed that the effective factors were the number of inserts and the feed rate on surface roughness. However, the depth of cut and the cutting speed showed an insignificant effect. Additionally, the First-order and Second-order regression analysis were conducted to estimate the performance characteristics of the experiment. The acquired regression equation results matched with the surface roughness measurement results. The optimal performance characteristics were obtained as a 0.5 mm depth of cut, 0.08 mm/rev feed rate, 325 m/min cutting speed and 1 number of inserts by using the Taguchi method. Additionally, the confirmation test results indicated that the Taguchi method was very prosperous in the optimization of the machining parameters to obtain the minimum surface roughness in the milling of the AISI 4140 steel.


2009 ◽  
Vol 62-64 ◽  
pp. 613-620 ◽  
Author(s):  
Ishaya Musa Dagwa

In this study, an attempt has been made to optimize cutting parameters (cutting speed, depth of cut, and feed rate) in conventional turning operations. A Taguchi orthogonal array (L933) was used in surface roughness optimization of a solid round bar of mild steel material. The experimental runs were randomized; two skilled machinists were involved in the turning operation using the same machining parameters. ANOVA analysis was performed to identify the percentage contribution of the factors affecting surface roughness during machining. The optimal cutting combination was determined by using the signal-to-noise ratio and the following results were obtained; speed (level 2) = 55.m/min, depth of cut (level 3) = 0.08mm, and feed rate (levels 3) = at 0.08mm/rev. A prediction of surface roughness was carried out using the optimal setting followed by a confirmatory test on the lathe. The result shows that the confirmatory runs compared favourably (96.44%) with the predicted surface roughness.


2021 ◽  
Vol 24 (2) ◽  
pp. 5-8
Author(s):  
Anđelko Aleksić ◽  
◽  
Milenko Sekulić ◽  
Marin Gostimirović ◽  
Dragan Rodić ◽  
...  

The objective of this paper is to investigate the effect of cutting parameters on cutting forces during turning of CPM 10V steel with coated cutting tool. Machining of CPM 10V steel and finding a suitable tool is very challenging due to its physical and mechanical properties, especially since the machining of this material has not been extensively researched. The experiments were carried out using an Index GU -600 CNC lathe and the cutting forces were measured in process. A three-factorial three-level experimental design was used for the experiments. Statistical method analysis of variance (ANOVA) is applied to study the effects of cutting speed, feed rate, and depth of cut on cutting forces. The results of this study show that depth of cut has the most significant effect on main force and radial force, while feed rate and cutting speed have the most significant effect on feed force. The developed model can be used in the machining industry to predict and analyze cutting parameters for optimal cutting forces.


2016 ◽  
Vol 45 (2) ◽  
pp. 73-80 ◽  
Author(s):  
K Rahul Varma ◽  
M. Kaladhar

In order to sustain in the global competitive scenario, the manufacturing industries have beenpracticing the various tools to achieve the high quality products at lower cost. Selection of appropriate cutting conditions is necessary to improve machinabilty of a work piece material. The present work objective is to find out the optimum cutting parameters in turning of hardened AISI M2 steel using cryogenically treated cutting inserts. The Utility concept coupled with Taguchi approach was employed to optimize both surface roughness and power consumption simultaneously. According to Analysis of variance (ANOVA) results, the feed was the major dominant factor followed by the cutting speed on multiple performance characteristics. The necessary optimum conditions for multiple performance characteristics optimization were obtained as cutting speed of 100 m/min, feed 0.04 mm/rev and depth of cut of 0.2 mm.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
S. H. Tomadi ◽  
J. A. Ghani ◽  
C. H. Che Haron ◽  
M. S. Kasim ◽  
A. R. Daud

The main objective of this paper is to investigate and optimize the cutting parameters on multiple performance characteristics in end milling of Aluminium Silicon alloy reinforced with Aluminium Nitride (AlSi/AlN MMC) using Taguchi method and Grey relational analysis (GRA). The fabrication of AlSi/AlN MMC was made via stir casting with various volume fraction of particles reinforcement (10%, 15% and 20%). End milling machining was done under dry cutting condition by using two types of cutting tool (uncoated & PVD TiAlN coated carbide). Eighteen experiments (L18) orthogonal array with five factors (type of tool, cutting speed, feed rate, depth of cut, and volume fraction of particles reinforcement) were implemented. The analysis of optimization using GRA concludes that the better results for the combination of lower surface roughness, longer tool life, lower cutting force and higher material removal could be achieved when using uncoated carbide with cutting speed 240m/min, feed 0.4mm/tooth, depth of cut 0.3mm and 15% volume fraction of AlN particles reinforcement. The study confirmed that with a minimum number of experiments, Taguchi method is capable to design the experiments and optimized the cutting parameters for these performance characteristics using GRA for this newly develop material under investigation.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


2015 ◽  
Vol 1089 ◽  
pp. 373-376
Author(s):  
Xing Wei Zheng ◽  
Guo Fu Ying ◽  
Yan Chen ◽  
Yu Can Fu

An experiment of face milling of Invar36 was conducted by using coated carbide insert, the microhardness was tested and the metallographic structure was observed to figure out the principles of work-hardening. The results showed that the depth of work-hardening ranges from 80μm to 160μm among the parameters selected in the experiments. The degree and the depth of work-hardening were significantly affected by the axial depth of cut and feed per tooth. The degree and the depth of work-hardening showed a tendency to increase with the increase of the axial depth of cut and feed per tooth. Compared with the axial depth of cut and feed per tooth, cutting speed had less influence on the degree and depth of work-hardening. The degree and depth of work- hardening decreased slowly with the increase of cutting speed. Metallographic observation showed that work-hardening layer consisted of the thermal force influenced layer and the force influenced layer, while the amorphous metallographic structure was observed in the thermal force influenced layer, and lattice distortion was observed in the force influenced layer.


Sign in / Sign up

Export Citation Format

Share Document