scholarly journals DESIGN OF A WIDE SLOT ANTENNA FOR BANDWIDTH ENHANCEMENT

Author(s):  
JUGAL DESAI ◽  
HITESH DHOLAKIYA ◽  
NARESH PATEL

Microstrip printed wide slot antenna with a fork like tuning stub for bandwidth enhancement is proposed in this paper. By applying fork like tuning stub to the microstrip wide slot antenna instead of line feed, it is experimentally found that operating bandwidth can be enhanced. Experimental results indicate that the impedance bandwidth, defined by -10dB return loss, of the proposed wide slot antenna can reach operating bandwidth of 3.1 GHz at operating frequency about 2 GHz which is 6 times greater than conventional wide slot antenna.

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4404 ◽  
Author(s):  
Son Trinh-Van ◽  
Oh Heon Kwon ◽  
Euntae Jung ◽  
Jinwoo Park ◽  
Byunggil Yu ◽  
...  

This paper presents a low-profile log-periodic meandered dipole array (LPMDA) antenna with wideband and high gain characteristics. The antenna consists of 14 dipole elements. For compactness, a meander line structure is applied to each dipole element to reduce its physical length. As a result, a compact and wideband LPMDA antenna is realized, exhibiting a wide impedance bandwidth of 1.04–5.22 GHz (ratio bandwidth of 5.02:1) for | S 11| < −10 dB. To enhance the antenna gain performance while maintaining the wideband behavior, the LPMDA antenna is integrated with a new design of an artificial magnetic conductor (AMC) structure. The designed AMC is realized by combining three AMC structures of different sizes to form a cascaded multi-section AMC structure, of which its overall operating bandwidth can continuously cover the entire impedance bandwidth of the LPMDA antenna. The proposed AMC-backed LPMDA antenna is experimentally verified and its measured −10 dB reflection bandwidth is found to be in the range of 0.84–5.15 GHz (6.13:1). At the main beam direction within the operating frequency bandwidth, the gain of the proposed AMC-backed LPMDA antenna ranges from 7.15–11.43 dBi, which is approximately 4 dBi higher than that of an LPMDA antenna without an AMC. Moreover, the proposed antenna has a low profile of only 0.138 λ L. ( λ L is the free-space wavelength at the lowest operating frequency).


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Dong Sik Woo ◽  
Young-Ki Cho ◽  
Kang Wook Kim

Amplitude and phase balances of two types of microstrip-(MS-) to-coplanar stripline (CPS) baluns have been analyzed through simulations and measurements, and their effects on broadband antenna performance are investigated. The impedance bandwidth of the balun determined by a back-to-back configuration can sometimes overestimate the balun operating bandwidth. With the conventional balun with a 180° phase delay line, it is observed that the balun balance over the operating frequencies becomes much more improved as the CPS length increases to over 0.1 λg. As compared with the conventional balun, the proposed MS-to-CPS balun demonstrated very wideband performance from 5 to over 20 GHz. With the proposed balun, amplitude and phase imbalances are within 1 dB and ±5°, respectively. Effects of the balun imbalance on overall broadband antenna performance are also discussed with a quasi-Yagi antenna and a narrow beamwidth tapered slot antenna (TSA).


Circuit World ◽  
2017 ◽  
Vol 43 (3) ◽  
pp. 105-110 ◽  
Author(s):  
Partibane B. ◽  
Gulam Nabi Alsath M. ◽  
Kalidoss Rajakani

Purpose This paper aims to presents the bandwidth enhancement of a hybrid slot–loop antenna using a modified feed structure. Design/methodology/approach The conventional monopole feed of the hybrid slot–loop radiator is loaded with a flat microstrip patch to excite higher-order modes. The proposed antenna combines the resonant modes of the slot antenna, the loop antenna and the patch loading. Findings The antenna exhibits a dual-band response suitable for GSM 1800/1900 and ultrawideband (UWB) standards. The impedance bandwidth extends from 1.65 to 1.95 GHz (11.42 per cent) and 3 to 11.1 GHz (114.9 per cent). The proposed antenna has the smallest footprint with a peak gain of 5.07 dBi at 1.8 GHz and 4.97 dBi at 6 GHz. The prototype antenna is fabricated and the simulation results are validated using experimental measurements. The performance of the bandwidth-enhanced hybrid slot–loop antenna is compared with that of other slot antennas. Originality/value Thus, a hybrid slot–loop antenna with an enhanced bandwidth has been reported in this study. The conventional monopole feed of the antenna is replaced with a monopole ending with a microstrip patch load. The antenna covers the operating bands of GSM 1800/1900 and UWB. The proposed antenna has a smaller footprint compared with other wide-slot antennas reported in the literature.


2014 ◽  
Vol 644-650 ◽  
pp. 4455-4458 ◽  
Author(s):  
Li Zhu ◽  
Xiang Jun Gao ◽  
Long Zheng

In this paper, a novel coplanar waveguide (CPW)-fed and miniaturized slot antenna for triple-frequency operation is proposed and investigated, which is printed on a small 20mm×20mm FR4 substrate with thickness of 1.0 mm and relative permittivity of 4.3. Through loading different slits, three perfect operating bands of 2.4GHz-2.45GHz, 3.25GHz-4.15GHz and 5.05GHz-6.25GHz are achieved respectively, when return loss is less than-10dB. Experimental results show that the antenna gives monopole-like radiation patterns and good antenna gains over the operating bands. Such antennas is suitable for WLAN 2.4/5.2/5.8 GHz and WiMAX 3.5/5.5 GHz applications.


2018 ◽  
Vol 68 (2) ◽  
pp. 197 ◽  
Author(s):  
Arvind Kumar ◽  
S. Raghavan

In this study, a planar cavity-backed bow-tie-complementary-ring-slot antenna is proposed, and a new approach for bandwidth enhancement using a shorted-via is introduced. A shorted-via concept overcomes the narrow impedance bandwidth of a conventional substrate integrated waveguide cavity-backed antenna. By adjusting the location of the shorted-via (placed just above the centroid of the radiating slot), the individual bandwidth of the lower and higher order resonances has been tuned below -10 dB criterion, which results in the broadening of the bandwidth. Finally, the antenna is proficient to operate for an impedance bandwidth of 15.71 per cent, ranging from 12.02~14.07 GHz. The proposed antenna shows a gain of better than 4 dBi within the operating band with less than 0.5 dBi variation. Moreover, the antenna preserves good radiation characteristics, which is similar to that of the conventional metallic counterpart. To validate the simulated results, an antenna is fabricated and tested. The simulated results in terms of the reflection coefficient, gain, and radiation patterns are in good agreement with the measured results.


2018 ◽  
Vol 7 (3) ◽  
pp. 87-92 ◽  
Author(s):  
P. Khanna ◽  
A. Sharma ◽  
A. K. Singh ◽  
A. Kumar

A CPW – Fed octagonal ring shaped antenna for wideband operation is presented. The radiating patch of proposed octagonal ring antenna consists of symmetrical slot in place of conventional annular ring microstrip antenna. The ground plane consists of two rectangular slots, while the radiator and the ground plane are on same plane that utilizes the space available around the radiator. The proposed antenna is simulated through Ansoft’s High Frequency Structure Simulator (HFSS). Measured result shows balanced agreement with the simulated results. The prototype is taken with dimensions 47 mm × 47 mm × 1.6 mm that achieves good return loss, constant group delay and good radiation patterns over the entire operating bandwidth of 2.0 to 9.5 GHz (7.5 GHz). The proposed antenna achieves high impedance bandwidth of 130%. Thus, the proposed antenna is applicable for S and C band applications.


Author(s):  
Krishnendu Chattopadhyay ◽  
Sekhar Ranjan Bhadra Chaudhuri

Microstrip patch antennas are printed antennas that find suitability because they are lightweight, low volume, thin in profile, dual frequency, and dual polarization operation, and compatible with MMIC. The objective of chapter is to exhibit the investigations on the bandwidth enhancement of microstrip antennas with special reference to microstrip-line-fed wide-slot antennas. Performances are realized and validated through experimental studies on the impedance properties by VNA and radiation properties by pattern measurement setup. An innovative method for the design of hexagonal wide-slot antenna has been proposed considering it as an equivalent magnetic surface of monopole antenna. Impedance bandwidth of the above slot antenna is enhanced through various tuning stubs. In case of forklike tuning stub, the obtained bandwidth is about 900MHz, for hexagonal stub the available bandwidth is 1751MHz. Further improvement in bandwidth is proposed through rotation of hexagonal wide slot, results in wide bandwidth of 5165 MHz covering all the WLAN and WiMAX applications.


2014 ◽  
Vol 8 (2) ◽  
pp. 237-242 ◽  
Author(s):  
Sudeep Baudha ◽  
Dinesh Kumar Vishwakarma

This paper presents a simple broadband planar monopole microstrip patch antenna with curved slot and partial ground plane. The proposed antenna is designed and fabricated on commercially available FR4 material with εr = 4.3 and 0.025 loss tangent. Bandwidth enhancement has been achieved by introducing a curved slot in the patch and optimizing the gap between the patch and the partial ground plane and the gap between the curved slot and the edge of the patch. Simulated peak gain of the proposed antenna is 4.8 dB. The impedance bandwidth (defined by 10 dB return loss) of the proposed antenna is 109% (2–6.8 GHz), which shows bandwidth enhancement of 26% as compared with simple monopole antenna. The antenna is useful for 2.4/5.2/5.8-GHz WLAN bands, 2.5/3.5/5.5-GHz WiMAX bands, and other wireless communication services. Measured results show good agreement with the simulated results. The proposed antenna details are described and measured/simulated results are elaborated.


Author(s):  
B. Hammache ◽  
A. Messai ◽  
I. Messaoudene ◽  
T. A. Denidni

Abstract In this paper, a compact stepped slot antenna for ultra-wideband (UWB) applications is proposed. A very small size and UWB bandwidth operation are achieved by integrating a stepped slot in the back side of the antenna. This stepped slot is excited by using a 50 Ω-feed line in the top side of the antenna. The antenna is characterized by an impedance bandwidth between 3.05 GHz and more than 12 GHz. The dimensions of the antenna are 17 mm × 8 mm × 1.27 mm, which leads to the most compact size compared with other works in the literature. The integrated stepped slot is divided into additional elementary slots, where each elementary slot has a matching point. Adding these elementary slots allows to increase further the operating bandwidth. The radiation pattern of the compact stepped slot antenna is omnidirectional in the H-plane and bidirectional in the E-plane. The measurement results agree well with the simulated ones in terms of impedance matching and radiation pattern.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 156
Author(s):  
Mohamed El Bakkali ◽  
Moulhime El Bekkali ◽  
Gurjot Singh Gaba ◽  
Josep M. Guerrero ◽  
Lavish Kansal ◽  
...  

Among other CubeSat subsystems, Antenna is one of the most important CubeSat components as its design determines all the telecommunication subsystems’ performances. This paper presents a coplanar wave-guide (CPW)-fed equilateral triangular slot antenna constructed and analyzed for CubeSat communications at S-band. The proposed antenna alone presents high gain and ultra-wide band while its radiation pattern is bidirectional at an unlicensed frequency of 2450 MHz. The objective is to use the CubeSat chassis as a reflector for reducing the back-lobe radiation and hence minimizing interferences with electronic devices inside the CubeSat. This leads to a high gain of 8.20 dBi and a unidirectional radiation pattern at an industrial, scientific and mdical (ISM) band operating frequency of 2450 MHz. In addition to that, the presented antenna is low-profile and exhibits high return loss, ultra-wide impedance bandwidth, and good impedance matching at 2450 MHz.


Sign in / Sign up

Export Citation Format

Share Document