scholarly journals MODELING OF GREEN ENERGY SOURCES –A SOLAR AND WIND HYBRID MODEL

Author(s):  
DIKSHA KHARE ◽  
SF. LANJEWAR

In parallel to developing technology, demand for more energy makes us seek new energy sources. The most important application field of this search is renewable energy resources.Wind and solar energy have been popular ones owing to abundant, ease of availability and convertibility to the electric energy. We will focus on Modeling the design and verification process for Renewable and Green Energy sources.Samples like solar,wind and tidal energy are used for making model.The term Green energy can be associated with environment-friendly Generation,transport,storage and control of electrical energy .Solar power,wind power and the natural flow of water are resources that comply with our definition of Green Energy.Since the natural fossil energy resources are limited on this planet,we have to put our focus on green power generation like solar and wind power.

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 970
Author(s):  
Zhao ◽  
Jiang ◽  
Liu

With the extensive development and use of new energy sources, it has become an urgent issue to solve the problem how to effectively use such energy sources. This paper designs a single-phase electric energy router (SPEER) whose main goal is to solve the problem of optimal operation of the home power system under a high penetration rate of new energy. First, a SPEER structure is presented which has an AC-DC hybrid form to meet the power requirements of all household electrical equipment. Compared with the existing structures, its structural design is more suitable for small-capacity systems, such as home power systems. Next, a reasonable, detailed, and feasible control scheme was designed for each part of the SPEER, so that it has the functions of plug and play, power routing, island detection, and synchronous grid connection, and a seamless coordination management scheme between subsystems was designed. Complete functions make it more intelligent in response to various conditions. Finally, the correctness of the designed SPEER and control strategy was verified by experiment.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3680
Author(s):  
Lasantha Meegahapola ◽  
Siqi Bu

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to the clean and low-carbon renewable energy sources [...]


2011 ◽  
Vol 148-149 ◽  
pp. 97-100
Author(s):  
Xu Gang Wang ◽  
Guang Qi Cao ◽  
Zhi Guang Guan ◽  
Zu Yu Zhao

Wind power is an important direction of new energy, which has no pollution, no consuming fossil fuels, and no producing waste, which is widely used at this stage of clean energy. The small stand alone wind power has been paid more and more attention due to its low cost, flexible installation, strong adaptability. This paper introduces the mechanical and electrical structure, which are used in KW level stand alone mode wind turbine automatically track and yaw system. The motion rules and control strategies of the tracking and yaw system are discussed and then the control program flow is provided. The PIC16F873 chip is used as controller for this part in this system. It can fully meet the design requirements, which will reduce costs and increase the system's control ability. This system can automatically track and yaw, according to the wind direction and wind power.


Author(s):  
Zhila Pirmoradi ◽  
G. Gary Wang

Plug-in Hybrid Electric Vehicles (PHEVs) bear great promises for increasing fuel economy and decreasing greenhouse gas emissions by the use of advanced battery technologies and green energy resources. The design of a PHEV highly depends on several factors such as the selected powertrain configuration, control strategy, sizes of drivetrain components, expected range for propulsion purely by electric energy, known as AER, and the assumed driving conditions. Accordingly, design of PHEV powertrains for diverse customer segments requires thorough consideration of the market needs and the specific performance expectations of each segment. From the manufacturing perspective, these parameters provide the opportunity of mass customization because of the high degree of freedom, especially when the component sizes and control parameters are simultaneously assessed. Based on a nonconventional sensitivity and correlation analysis performed on a simulation model for power-split PHEVs in this study, the product family design (PFD) concept and its implications will be investigated, and limitations of PFD for such a complex product along with directions for efficient family design of PHEVs will be discussed.


2018 ◽  
Vol 7 (3.5) ◽  
pp. 4
Author(s):  
Valeri Telegin ◽  
Nikolai Titov ◽  
Anatoli Stepanov

Power supply systems for small businesses based on renewable energy sources are most often based on converting wind energy, solar energy and water energy. Calculating its effectiveness is a time-consuming task, requiring the processing of a large amount of data specific for the geographical location of power generating units. In the article the technique of computer modeling of work of a park of wind power plants (WPP) with the purpose of definition of an optimum parity of their parameters is considered.   


2020 ◽  
Vol 2 (3) ◽  
pp. 270-289 ◽  
Author(s):  
Leonel J. R. Nunes

The use of biomass as a renewable energy source is currently a reality, mainly due to the role it can play in replacing fossil energy sources. Within this possibility, coal substitution in the production of electric energy presents itself as a strong alternative with high potential, mostly due to the possibility of contributing to the decarbonization of energy production while, at the same time, contributing to the circularization of energy generation processes. This can be achieved through the use of biomass waste forms, which have undergone a process of improving their properties, such as torrefaction. However, for this to be viable, it is necessary that the biomass has a set of characteristics similar to those of coal, such that its use may occur in previously installed systems. In particular, with respect to grindability, which is associated with one of the core equipment technologies of coal-fired power plants—the coal mill. The objective of the present study is to determine the potential of certain residues with agroforestry origins as a replacement for coal in power generation by using empirical methods. Selected materials—namely, almond shells, kiwifruit pruning, vine pruning, olive pomace, pine woodchips, and eucalyptus woodchips—are characterized in this regard. The materials were characterized in the laboratory and submitted to a torrefaction process at 300 °C. Then, the Statistical Grindability Index and the Hardgrove Grindability Index were determined, using empirical methods derived from coal analysis. The results obtained indicate the good potential of the studied biomasses for use in large-scale torrefaction processes and as replacements for coal in the generation of electrical energy. However, further tests are still needed, particularly relating to the definition of the ideal parameters of the torrefaction process, in order to optimize the grindability of the materials.


2021 ◽  
Vol 11 (1) ◽  
pp. 6730-6733
Author(s):  
K. A. Samo ◽  
A. Baharun ◽  
A. R. H. Rigit

Renewable energy sources are considered a part of the future of energy production in Malaysia. The main objectives of this research are to append a new energy extraction technique that harvests energy from tides and to develop a preliminary design for a tidal energy plant at Kuching Barrage. Knowing the diameter of the turbine, the dimensions of the powerhouse are achieved in conjunction with site conditions. The centerline should be at least below the low water tide so that the tide is at all times guaranteed to be submerged. Based on this, the powerhouse has a 24.61m length, is about 100m in distance across, and its elevation is 36.39m. The construction is located downstream and the centerline habitation at -1.15 and below LSD. The calculated tidal energy plant is comprised of four bulb-type turbines installed at each barrage gate. The bulb-type turbine blades would face the sea site with 11.32m length of the draft tube. This study detailed feasibility study can be implemented.


2021 ◽  
Vol 296 ◽  
pp. 01007
Author(s):  
Elena Andreeva ◽  
Alla Golovina ◽  
Victoria Zakharova

The changes in the sphere of the main energy sources in the world and in individual countries were highlighted; the prospects for Russian energy carriers in the global hydrocarbon market were identified. The demand for an energy carrier whose use in Germany is planned to be discontinued (coal) and the demand and competition for natural gas - Russian energy carrier that remains competitive in the conditions of “green” energy were analyzed. The Russian opportunity to save the energy supply market on the background of the new energy order are considered.


2021 ◽  
Author(s):  
Baijun Wu ◽  
Bingfeng Zhai ◽  
Huaizi Mu ◽  
Xin Peng ◽  
Chao Wang ◽  
...  

Abstract Energy security and environmental measurements are incomplete without renewable energy therefore there is a dire need to explore new energy sources. Therefore, the aim of this study is to measure the wind power potential to generate the renewable hydrogen including its production and supply cost. We used first order eneginnering model and net present value to measure the levelized cost of wind generated renewable hydrogen by using the data source of Pakistan metorological department and State bank of Paksitan. Results shows that the use of surplus wind and renewable hydoregn energy for green economic production is suggested as an innovative project option for large-scale hydrogen use. The key annual running expenses for hydrogen are electricity and storage cost, which have a major impact on the costs of renwable hydrogen. Also, the results indicates that project has the potential to cut CO2 pollution by 139 million metric tons and raise revenue for wind power plants by 2998.52 million dollars. The renewable electrolyzer plants avoided CO2 at a rate of 24.9–36.9 $/ton under baseload service, relative to 44.3 $/ton for the benchmark. However, in the more practical mid-load situation, these plants have a significant benefit. Further, the wind generated renewable hydrogen deliver a 6–11% larger than annual rate of return than the standard CO2 catch plant due to their capacity to remain running and supply hydrogen to the consumer through periods of plentiful wind and heat. Also, the measured levelized output cost of hydrogen (LCOH) was 6.22$/kgH2 and for the PEC system, it was 8.43 $/kgH2. Finally, its mutually agreed consensus of the environmental scientist that integration of renewable energy is the way forward to increase energy security and environmental performance by ensuring uninterrupted clean and green energy. Further, this application has the potential to address Pakistan’s urgent issues of large-scale surplus wind and solar-generated energy, as well as rising enegry demand.


2014 ◽  
Vol 556-562 ◽  
pp. 1533-1536
Author(s):  
Jia Zhou ◽  
Xiao Long Tan ◽  
Wen Bin Wang

Inverter technology as the key part of using new energy technology, can be very effective to new energy sources such as solar, battery and fuel cell energy conversion of ac electrical energy transform into ac power, and can be connected to the grid. Therefore, the inverter technology has an extremely important statue in modern society.


Sign in / Sign up

Export Citation Format

Share Document