scholarly journals Settlement Response of a Multi-Story Building

2020 ◽  
Vol 10 (5) ◽  
pp. 6220-6223
Author(s):  
A. H. Bhutto ◽  
G. S. Bhurgri ◽  
S. Zardari ◽  
M. A. Zardari ◽  
B. A. Memon ◽  
...  

The settlement calculation of a multi-story building is a challenging task due to the variation of soil properties and the use of an appropriate constitutive model for the reliable representation of soils’ stress-strain behaviors. In this study, the settlement response of a multi-story building was calculated with the simple Mohr-Coulomb Model (MCM) and the Hardening Soil Model (HSM). The effect of soil modulus of elasticity using both models was investigated on the overall settlement response of the building. Results indicated that MCM overestimated immediate settlement in a range of 50 to 65% compared to HSM. The settlement response of the building calculated with both models was within the allowable range. The results of this study can be helpful for geotechnical engineers working on reliable predictions of the settlement of multi-story buildings.

2019 ◽  
Vol 9 (5) ◽  
pp. 4654-4658 ◽  
Author(s):  
A. H. Bhutto ◽  
S. Zardari ◽  
M. A. Zardari ◽  
G. S. Bhurgri ◽  
B. A. Memon ◽  
...  

In this study, numerical analysis of an embankment dam was carried out to predict settlement behavior with the use of the Mohr-Coulomb Model (MCM) and of the Hardening Soil Model (HSM). The MCM was applied to all material zones of the dam and the HSM was used for four major material zones that occupied significant volume. The settlement response of the dam was similar for MCM and HSM for three material zones (clay core, sandy gravel and random fill), each having a modulus of elasticity (MOE) in the range of 25000 to 50000kPa. However, it was found that after the end of the construction, the MCM showed about 57% and 50% more settlement as compared to HSM when MOE of sandy siltstone varied from 70000 to 125000kPa respectively. The results regarding the dam settlement predicted with the HSM are in agreement with the findings in previous studies.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 529
Author(s):  
Chunzhi Du ◽  
Zhifan Li ◽  
Bingfei Liu

Nanoporous Shape Memory Alloys (SMA) are widely used in aerospace, military industry, medical and health and other fields. More and more attention has been paid to its mechanical properties. In particular, when the size of the pores is reduced to the nanometer level, the effect of the surface effect of the nanoporous material on the mechanical properties of the SMA will increase sharply, and the residual strain of the SMA material will change with the nanoporosity. In this work, the expression of Young’s modulus of nanopore SMA considering surface effects is first derived, which is a function of nanoporosity and nanopore size. Based on the obtained Young’s modulus, a constitutive model of nanoporous SMA considering residual strain is established. Then, the stress–strain curve of dense SMA based on the new constitutive model is drawn by numerical method. The results are in good agreement with the simulation results in the published literature. Finally, the stress-strain curves of SMA with different nanoporosities are drawn, and it is concluded that the Young’s modulus and strength limit decrease with the increase of nanoporosity.


2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


2004 ◽  
Vol 41 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Dieter Stolle ◽  
Peijun Guo ◽  
Gabriel Sedran

This paper analyzes the impact of natural random variation of soil properties on the constitutive modelling of geomaterial behaviour. A theoretical framework for accommodating variation in soil properties is presented. The framework is then used to examine the consequence of parameter variability on stress–strain relations. An important observation is that average soil parameters from a series of tests on small specimens, in which density of the specimens varies randomly, do not necessarily reflect the average constitutive behaviour of soil. Model predictions are shown to be consistent with the experimental data.Key words: random variability, deterministic analysis, soil parameters, constitutive model.


2000 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

Abstract The main objective of this paper is to generate cyclic stress-strain curves for sheet metals so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Teuku Rihayat ◽  
Noor Mustafa ◽  
Saari Mustapha

This study investigates the effect of filler content on mechanical properties for polypropylene. There are  synthesis clay and  un-synthesis clay  used  as  filler  content. Different ratio  of  clay  was  d  in polypropylene to study which ratio have a better mechanical properties. The tensile test was carried out using INSTRON5565 and the maximum stress, strain, and modulus of elasticity observed. Results of the study showed that polypropylene/clay nanocomposite has a higher maximum stress compare to pure polypropylene and un-synthesis clay have a lowest. Besides that modulus of elasticity of specimen calculated and finds that it increased with increment filler content and strain did not affect by filler. The conclusion is synthesis clay filled into polypropylene will having a better material.Keywords: Nanocomposite, polypropylene, synthesis clay.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Hadianti Muhdinar Pasaribu

Banyaknya pembangunan infrastruktur yang merupakan salah satu tolak ukur kemajuan suatu daerah menyebabkan terjadinya penyempitan lahan didaerah tersebut. Sehingga pemanfaatan ruang dan lahan sangat dibutuhkan untuk menunjang kemajuan pesatnya pembangunan infrastruktur. Salah satu inovasi terbaik dalam mengatasi masalah keterbatasan lahan adalah membuat bangunan bawah tanah sehingga memberi ruang yang lebih untuk pembangunan. Pembangunan yang cukup terbaru di Indonesia saat ini adalah pembangunan MRT (Mass Rapid Transit) yang dilakukan di Jakarta. Pembangunan ini dalam pelaksanaannya membutuhkan proses konstruksi terowongan (tunneling) dan galian dalam untuk tiap stasiunnya. Pada penelitian ini, penulis terpusat terhadap masalah galian dalam pada stasiun Senayan dari proyek konstruksi MRT Jakarta. Permasalahan terbesar dalam suatu pekerjaan galian dalam adalah adanya deformasi lateral pada dinding bangunan bawah tanah dalam hal ini yang digunakan adalah dinding diafragma (D-Wall) dan juga adanya penurunan tanah disekitar galian. Oleh karena itu, perlu dilakukan pengecekan agar tidak terjadi keruntuhan. Metode konstruksi yang digunakan pada stasiun Senayan adalah metode konstruksi Top-Down. Pada penelitian ini dilakukan analisis deformasi horizontal dan penurunan tanah menggunakan software Plaxis 3D dengan dua pemodelan tanah, yaitu model tanah Mohr Coulomb dan Hardening Soil. Hasil deformasi horizontal yang diperoleh menggunakan model tanah Hardening Soil lebih mendekati  monitoring dilapangan dibandingkan dengan model tanah Mohr-Coulomb. Penelitian ini berfokus pada bagian-bagian tepi pada dinding diafragma melengkapi jurnal sebelumnya yang berfokus pada titik tengah dari dinding diafragma. Besarnya deformasi horizontal pada tahap akhir galian (penimbunan kembali tanah hingga dasar muka tanah) di titik P#80 (di tepi dinding diafragma) tercatat pada monitoring inclinometer sebesar 4.15 mm, dan deformasi yang dihasilkan menggunakan model Hardening Soil sebesar 9.57 mm sedangkan  menggunakan model Mohr-Coulomb sebesar 16.05 mm. Hasil deformasi horizontal yang diperoleh menggunakan model tanah Hardening Soil lebih mendekati  monitoring dilapangan dibandingkan dengan model tanah Mohr-Coulomb meskipun hasil yang diperoleh cukup jauh dari monitoring dilapangan.  Kata Kunci : Galian Dalam, Deformasi Horizontal, Model Mohr Coulomb, Model Hardening Soil, Plaxis 3D  The number of infrastructure development which is one of the benchmarks of the progress of a region causes the narrowing of land in the area. So that the utilization of space and land is needed to support the rapid progress of infrastructure development. One of the best innovations in overcoming the problem of land limitations is to make the underground building giving more space for development. The most recent development in Indonesia today is the construction of MRT (Mass Rapid Transit) conducted in Jakarta. This development in its implementation requires tunneling and deep trenching process for each station. In this study, the authors centered on the deep trenching problems at the Senayan station from the Jakarta MRT construction project. The biggest problem in a deep trenching work is the lateral deformation of underground building walls in this case which is used diaphragm wall (D-Wall) and also the decrease of soil around the excavation. Therefore, it is necessary to check to avoid collapse. The construction method used in Senayan station is a Top-Down construction method. In this research, horizontal deformation and soil degradation analysis using Plaxis 3D software with two soil modeling, Mohr Coulomb and Hardening Soil soil model. The result of the horizontal deformation obtained using Soil Hardening Soil model is closer to monitoring the field compared to the Mohr-Coulomb soil model. This study focuses on the edges of the diaphragm wall complementing the previous journal focusing on the midpoint of the diaphragm wall. The magnitude of the horizontal deformation at the final stages of excavation (backfill) to P # 80 (on the edge of the diaphragm wall) was recorded in inclinometer monitoring of 4.15 mm, and the resulting deformation using the Hardening Soil model of 9.57 mm while using the Mohr model -Coulomb of 16.05 mm. The horizontal deformation results obtained using the Soil Hardening Soil model is closer to the field monitoring than the Mohr-Coulomb soil model although the results obtained are quite far from the field monitoring.Keywords: Deep Excavation, Horizontal Deformation, Mohr Coulomb Model, Hardening Soil Model, Plaxis 3D.


2019 ◽  
Author(s):  
Mazin S. Sirry ◽  
Laura Dubuis ◽  
Neil H. Davies ◽  
Jun Liao ◽  
Thomas Franz

AbstractFinite element (FE) models have been effectively utilized in studying biomechanical aspects of myocardial infarction (MI). Although the rat is a widely used animal model for MI, there is a lack of material parameters based on anisotropic constitutive models for rat myocardial infarcts in literature. This study aimed at employing inverse methods to identify the parameters of an orthotropic constitutive model for myocardial infarcts in the acute, necrotic, fibrotic and remodelling phases utilizing the biaxial mechanical data developed in a previous study. FE model was developed mimicking the setup of the biaxial tensile experiment. The orthotropic case of the generalized Fung constitutive model was utilized to model the material properties of the infarct. The parameters of Fung model were optimized so that the FE solution best fitted the biaxial experimental stress-strain data. A genetic algorithm was used to minimize the objective function. Fung orthotropic material parameters for different infarct stages were identified. The FE model predictions best approximated the experimental data of the 28 days infarct stage with 3.0% mean absolute percentage error. The worst approximation was for the 7 days stage with 3.6% error. This study demonstrated that the experimental biaxial stress-strain data of healing rat infarcts could be successfully approximated using inverse FE methods and genetic algorithms. The material parameters identified in this study will provide an essential platform for FE investigations of biomechanical aspects of MI and the development of therapies.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


Sign in / Sign up

Export Citation Format

Share Document