scholarly journals A Scientific Approach of using the DMAIC Methodology to Investigate the Effect of Cutting Tool Life on Product Quality and Process Economics: A Case Study of a Saudi Manufacturing Plant

2021 ◽  
Vol 11 (1) ◽  
pp. 6799-6805
Author(s):  
A. B. E. Aichouni ◽  
H. Abdullah ◽  
F. Ramlie

One of the major priorities for manufacturing companies in the globalized economy is the ability to offer high-quality products to customers at the lowest production cost. Globally, process improvement methods and techniques are used to reduce waste and improve product and service quality. This paper aims to propose a systematic model based on process improvement methodologies and tools to help the manufacturing companies decide on cutting tool life and other manufacturing issues. This research seeks to prove that some common industry practices, such as changing cutting tools in machining processes, can significantly affect the economics of production and the overall performance of the plant. The research is mainly based on analyzing real field data using the DMAIC methodology to identify improvements in order to achieve a balance between economy and quality in a Saudi manufacturing plant. Although the study was concerned only with changing cutting tools in the machining process in an air conditioning plant, its findings and conclusions can be generalized to all manufacturing processes.

2019 ◽  
Vol 813 ◽  
pp. 55-61
Author(s):  
Juan Manuel Vázquez-Martínez ◽  
Irene Del Sol ◽  
Moises Batista ◽  
Severo Raúl Fernández-Vidal ◽  
Pedro M. Hernandez ◽  
...  

Machining process usually involves relevant wear effects on the cutting tool, producing undesirable surface features on the work-pieces. Lubricants and cooling fluids are used with the aim to minimize the wear phenomena as well as high temperatures produced during the cutting processes. However, the use of these fluids may have an adverse environmental impact. For this reason, the reduction of quantity of cutting fluids used in the machining process is a requirement in order to improve the performance and sustainability of the process. For this purpose, this work proposes an increase of the lubricant retention ability for cutting tools based on surface modification. In this research, micro-geometrical features of Carbide (WC-Co) surfaces have been modified by laser texturing techniques. A wide range of roughness topographies had been developed by changing the laser irradiation parameters of energy density of pulse (Ed) and scanning speed of the beam (Vs). Different geometries of the textured tracks (single spots, linear tracks, circular tracks) also were studied. Moreover, through specific roughness features conducted by texturing process, the retention ability of cutting fluids was modified. It was evaluated by the contact angle between liquid and solid phases. This modification allowed to increase the self-lubricant effect of the WC-Co surface. This methodology has been validated on carbide tools under lubricated machining processes. Wear effects on the cutting tool were reduced and the surface finish of the machined parts was remained at least in the same ranges as non-modified tools.


Author(s):  
Yongqing Wang ◽  
Haibo Liu ◽  
Yongquan Gan ◽  
Lingsheng Han ◽  
Kuo Liu ◽  
...  

Abstract Cryogenic manufacturing processes have emerged as environmental-friendly, increase tool life and improve surface integrity of machined components by efficiently removing the heat from the cutting zone. Especially considered to be an efficient method to machine difficult-to-cut metals which are poor thermal conductivity, such as nickel, titanium alloys and polymer materials and so on. Many researchers have studied the effectiveness of cryogenic machining process, such as increasing tool life and improving surface integrity and so on. However, most articles on this topic were not considered the applications of actual industry. Cutting tool is one of the most important parts of industry applications. Most of cutting tools were not designed for cryogenic machining. In this work, the internally cooled turning tool was developed for cryogenic machining. The spray angle and diameter of the outlet were optimized by thermal field simulations. The results showed that 15° injection angle was more suitable to the machining process. Compare to 1mm outlet diameter, 3mm outlet diameter had better cooling effect. And the shape of outlet was optimized. A pressure simulation of the inner channel is carried out. The result shows that the pressure drop from inlet to outlets is only 66.696277Pa (about 6‰). Then, a spray test of the cutting tool was performed. The tests revealed that liquid nitrogen could be transmitted accurately and stably to the tool nose and the machining area. At last, a machining experiment proved that the turning tool could reduce the cutting temperature effectively when machining Ti-6Al-4V.


2017 ◽  
Vol 44 (1) ◽  
pp. 41
Author(s):  
Luka Čerče ◽  
Davorin Kramar ◽  
Janez Kopac

The tool-wear of cutting tools has a very strong impact on the product quality as well as efficiency of the machining processes. Despite the nowadays high automation level in machining industry, tool -wear diagnostic that is measured of the machine tool, still prevent complete automation of the entire machining process. Therefore, its in line characterization is crucial. Thus the paper presents developed innovative, robust and reliable direct measuring procedure for measuring spatial cutting tool-wear in-line, with the usage of laser profile sensor. The technique provides possibility for determination of 3D wear profiles, as advantage to currently used 2D subjective techniques (microscopes, etc.). The use of proposed measurement system removes the subjective manual inspection and minimizes the time used for wear easurement. In the manuscript the system is experimentally tested on a case s tudy, with further in-depth performed analyses of spatial cutting tool-wear.


2014 ◽  
Vol 551 ◽  
pp. 221-227
Author(s):  
Zhi Qiang Zhang ◽  
Tie Qiang Gang ◽  
Yi Kai Yi

In this paper, based on finite element simulation software AdvantEdge, the effects of different coating materials and thickness on the wear of cutting tools during the machining process have been studied. For the tools with coating materials of TiAlN, Al2O3, TiN, TiC, we can calculate the wear rate according to the Usui mathematical model of tool wear, and then consider thickness factor of TiC coating. Because of the lowest thermal conductivity, the workpiece cut by TiC coated tool will soften first and more over cutting time, it result in the lowest wear rate. And with the increase of coating thickness, the effect of "thermal barrier" is more obvious for the relatively thicker coating tool, but the relative sliding velocity between the chip and tool is increasing meanwhile, so a suitable coating thickness is necessary.


2013 ◽  
Vol 690-693 ◽  
pp. 3359-3364
Author(s):  
Shou Jin Sun ◽  
Milan Brandt ◽  
John P.T. Mo

A higher strength and heat resistance are increasingly demanded from the advanced engineering materials with high temperature applications in the aerospace industry. These properties make machining these materials very difficult because of the high cutting forces, cutting temperature and short tool life present. Laser assisted machining uses a laser beam to heat and soften the workpiece locally in front of the cutting tool. The temperature rise at the shear zone reduces the yield strength and work hardening of the workpiece, which make the plastic deformation of the hard-to-machine materials easier during machining. The state-of-the-art, benefits and challenges in laser assisted machining of metallic materials are summarized in this paper, and the improvement of tool life is discussed in relation to laser power, beam position and machining process parameters.


2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Diego Alejandro Neira Moreno

El estudio de las variables y efectos derivados del mecanizado provee herramientas de conocimiento tendientes a optimizar el uso de las herramientas y los procedimientos de maquinado industrial. Este artículo de reflexión aborda el uso de los dispositivos de interrupción súbita (DIS) como herramientas de obtención de raíces de viruta para la investigación científica del mecanizado industrial, y para el estudio de los efectos derivados de la interacción entre las herramientas de corte y el material de trabajo, en función de los cambios microestructurales del material de trabajo, dependientes de la temperatura producida y los esfuerzos mecánicos de la herramienta de corte durante el mecanizado. Mediante la reflexión se destaca la importancia de los DIS como instrumentos de investigación científica en la manufactura, ya que estos permiten obtener muestras de viruta para estudiar las variables incidentes en el maquinado y a partir de esta evidencia, proponer alternativas para optimizar la fabricación de piezas y la integridad de las herramientas empleadas en el proceso.AbstractThe study of the variables and effects derived from the machining processes brings the knowledge needed to optimize the use of machining tools and procedures. This article is an opinion piece about the use of quick stop devices (QSD) as a scientific research instrument in machining projects to obtain chip roots, to study the interaction phenomena between cutting tool and work piece material that depends on temperature and the mechanical forces produced by the cutting tool during the cutting process. This article deals about how important the QSD are as a research instruments in manufacture because with this instruments it is possible to analyze the machining variables, based on the evidences bring by the chip roots obtained with the instrument. It is possible to propose optimization alternatives in the manufacture of machined parts and the integrity of cutting tools.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 623 ◽  
Author(s):  
Dervis Ozkan ◽  
Peter Panjan ◽  
Mustafa Sabri Gok ◽  
Abdullah Cahit Karaoglanli

Carbon fiber-reinforced polymers (CFRPs) have very good mechanical properties, such as extremely high tensile strength/weight ratios, tensile modulus/weight ratios, and high strengths. CFRP composites need to be machined with a suitable cutting tool; otherwise, the machining quality may be reduced, and failures often occur. However, as a result of the high hardness and low thermal conductivity of CFRPs, the cutting tools used in the milling process of these materials complete their lifetime in a short cycle, due to especially abrasive wear and related failure mechanisms. As a result of tool wear, some problems, such as delamination, fiber breakage, uncut fiber and thermal damage, emerge in CFRP composite under working conditions. As one of the main failure mechanisms emerging in the milling of CFRPs, delamination is primarily affected by the cutting tool material and geometry, machining parameters, and the dynamic loads arising during the machining process. Dynamic loads can lead to the breakage and/or wear of cutting tools in the milling of difficult-to-machine CFRPs. The present research was carried out to understand the influence of different machining parameters on tool abrasion, and the work piece damage mechanisms during CFRP milling are experimentally investigated. For this purpose, cutting tests were carried out using a (Physical Vapor Deposition) PVD-coated single layer TiAlN and TiN carbide tool, and the abrasion behavior of the coated tool was investigated under dry machining. To understand the wear process, scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) was used. As a result of the experiments, it was determined that the hard and abrasive structure of the carbon fibers caused flank wear on TiAlN- and TiN-coated cutting tools. The best machining parameters in terms of the delamination damage of the CFRP composite were obtained at high cutting speeds and low feed rates. It was found that the higher wear values were observed at the TiAlN-coated tool, at the feed rate of 0.05 mm/tooth.


Author(s):  
Thomas McLeay ◽  
Michael S Turner ◽  
Keith Worden

The most common machining processes of turning, drilling, milling and grinding concern the removal of material from a workpiece using a cutting tool. The performance of machining processes depends on a number of key method parameters, including cutting tool, workpiece material, machine configuration, fixturing, cutting parameters and tool path trajectory. The large number of possible configurations can make it difficult to implement fault detection systems without having to train the system to a particular method or fault type. The research of this article applies a novel method to detect the changing state of a process over time in order to detect faulty machining conditions such as worn tools and cutting depth changes. Unlike studies in the previous literature in this domain, an unsupervised learning method is used, so that the method can be applied in production to unfamiliar processes or fault conditions. In the case presented, novelty detection is applied to a multivariate sensor feature data set obtained from a milling process. Sensor modalities include acoustic emission, vibration and spindle power and time and frequency domain features are employed. The Mahalanobis squared-distance is used to measure discordancy of each new data point, and values that exceed a principled novelty threshold are categorised as fault conditions.


Author(s):  
Mihir Joshi ◽  
Matthias Weigold ◽  
Michael Schoell

Abstract The use of cutting tool systems with a high slenderness ratio is encountered in the machining of deep cavities in the mechanical engineering industry, especially in the manufacturing of tools and dies. Cutting tool systems with a large slenderness ratio, owing to their dynamic compliance, are prone to vibrations during machining processes. These vibrations affect the quality of the machining process and the life of machine components. Integration of a vibration absorber in the cutting tool system helps in the reduction of machining vibrations. The reduction in vibrations is due to a shift in the resonance frequency of the modified system. This experimental study presents the identification of design possibilities of a vibration absorber for integration in the cutting tool system. The mass and geometry of the vibration absorber are varied and its integration in the milling chuck is explored. Firstly, experimental modal analysis is conducted to determine the effects of the dynamic vibration absorber on the frequency response function of the modified cutting tool system. Secondly, the effects of the dynamic vibration absorber on the machining process for a range of technology parameters are illustrated. During the machining process, the cutting forces are measured using a three-component dynamometer in time domain. Finally, the results are evaluated based on process quality, i.e. surface roughness and analysis of cutting force signal in the frequency domain. This study provides an understanding of the relationship between the mass and the geometry of the vibration absorber integrated in the cutting tool system and their influence on process stability.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1377 ◽  
Author(s):  
Antonella Rizzo ◽  
Saurav Goel ◽  
Maria Luisa Grilli ◽  
Roberto Iglesias ◽  
Lucyna Jaworska ◽  
...  

A variety of cutting tool materials are used for the contact mode mechanical machining of components under extreme conditions of stress, temperature and/or corrosion, including operations such as drilling, milling turning and so on. These demanding conditions impose a seriously high strain rate (an order of magnitude higher than forming), and this limits the useful life of cutting tools, especially single-point cutting tools. Tungsten carbide is the most popularly used cutting tool material, and unfortunately its main ingredients of W and Co are at high risk in terms of material supply and are listed among critical raw materials (CRMs) for EU, for which sustainable use should be addressed. This paper highlights the evolution and the trend of use of CRMs) in cutting tools for mechanical machining through a timely review. The focus of this review and its motivation was driven by the four following themes: (i) the discussion of newly emerging hybrid machining processes offering performance enhancements and longevity in terms of tool life (laser and cryogenic incorporation); (ii) the development and synthesis of new CRM substitutes to minimise the use of tungsten; (iii) the improvement of the recycling of worn tools; and (iv) the accelerated use of modelling and simulation to design long-lasting tools in the Industry-4.0 framework, circular economy and cyber secure manufacturing. It may be noted that the scope of this paper is not to represent a completely exhaustive document concerning cutting tools for mechanical processing, but to raise awareness and pave the way for innovative thinking on the use of critical materials in mechanical processing tools with the aim of developing smart, timely control strategies and mitigation measures to suppress the use of CRMs.


Sign in / Sign up

Export Citation Format

Share Document