scholarly journals The Energy Output from the Kuching Barrage in East Malaysia

2021 ◽  
Vol 11 (2) ◽  
pp. 6970-6973
Author(s):  
K. A. Samo ◽  
M. U. Keerio ◽  
S. A. Shaikh ◽  
A. R. H. Rigit ◽  
K. C. Mukwana

Electricity generation from the sea has many advantages in comparison with other renewable energy resources. Power can be generated from new or existing barrages. Based on previous location research, a suitable system to produce tidal range energy from a potential site was developed in this paper. The main objective of this research is to calculate the energy output of the Kuching Barrage of Sarawak State of Malaysia. The daily flushing process of Kuching Barrage is conducted during the low tide period and therefore to put up the ebb generation process is appropriate. The calculated period of power generation is determined to about 6 hours. The annual energy output is calculated based on a theoretical method, with the average daily potential energy calculated to be 5.8MW and approximately 10.23GWh/year could be harnessed. This research can be beneficial for energy generation with the use of a double basin scheme for the construction of new barrages in East Malaysia.

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2870 ◽  
Author(s):  
Jingjing Xue ◽  
Reza Ahmadian ◽  
Roger Falconer

Marine renewable energy, including tidal renewable energy, is one of the less exploited sources of energy that could contribute to energy demand, while reducing greenhouse gas emissions. Amongst several proposals to build tidal range structure (TRS), a tidal lagoon has been proposed for construction in Swansea Bay, in the South West of the UK, but this scheme was recently rejected by the UK government due to the high electricity costs. This decision makes the optimisation of such schemes more important for the future. This study proposes various novel approaches by breaking the operation into small components to optimise the operation of TRS using a widely used 0-D modelling methodology. The approach results in a minimum 10% increase in energy output, without the inclusion of pumping, in comparison to the maximum energy output using a similar operation for all tides. This increase in energy will be approximately 25% more when pumping is included. The optimised operation schemes are used to simulate the lagoon operation using a 2-D model and the differences between the results are highlighted.


2020 ◽  
Vol 10 (4) ◽  
pp. 6047-6051 ◽  
Author(s):  
K. A. Samo ◽  
I. A. Samo ◽  
Z. A. Siyal ◽  
A. R. H. Rigit

Tidal range energy is one of the most predictable and reliable sources of renewable energy. This study’s main aim is to determine potential sites for tidal range power in East Malaysia, by analyzing tidal range distributions and resources and the feasibility of constructing barrages. Investigation was conducted in 34 sites, estimating their potential energy outputs and studying their areas for constructing barrages. Only 18 sites were marked as appropriate for constructing a tidal range energy extraction barrage. The highest potential power was found in Tanjung Manis, and its maximum capacity was calculated as 50.7kW. The second highest potential of tidal power extraction was found in Kuching Barrage at Pending, where an energy harvester could produce electric power up to 33.1kW.


2020 ◽  
Vol 10 (6) ◽  
pp. 6399-6402
Author(s):  
K. A. Samo ◽  
I. A. Samo ◽  
W. Mughal ◽  
A. R. H. Rigit ◽  
A. A. Sohoo

The tidal range is a renewable energy source. In Malaysia, most of the produced renewable energy is generated from the exploitation of the tidal range. The main purpose of this research is to determine a suitable system to produce tidal range energy from a potential site. A turbine selection chart is used. The mean tidal range of Kuching Barrage is 4.2m and the maximum flow rate over a gate is 226.9m3/s. Therefore, for the extraction of electrical power, a bulb-type turbine with a rated power of 5.2MW is identified as suitable to be deployed at the site.


2017 ◽  
Vol 184 (1) ◽  
pp. 48-62 ◽  
Author(s):  
Ramkumar B. Nair ◽  
Maryam M. Kabir ◽  
Patrik R. Lennartsson ◽  
Mohammad J. Taherzadeh ◽  
Ilona Sárvári Horváth

AbstractIntegration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates.


1976 ◽  
Vol 1 (15) ◽  
pp. 129 ◽  
Author(s):  
C.J. Apelt ◽  
A. Macknight

The paper describes investigations carried out in order to design for the wave action, both wave force and scour, on large off-shore berthing structures sited approximately 1.3 miles (2.1 km) off-shore near Hay Point, North Queensland, in 56 feet (17 m) of water at low tide, the tidal range being 20 feet (6 m). The region is a cyclone area and the structures must be capable of withstanding attack from maximum predicted waves with period of 8.25 seconds and amplitude of 24 feet (7.3 m). The main units in the berthing structures are concrete caissons sunk on to the ocean bed and the largest of these have plan dimensions of approximately 150 feet (46.7 m) by 135 feet (41.4 m) with four columns approximately 40 feet (12.2 m) square projecting through the water surface. No theoretical method available at the time of the investigation was capable of accurate calculation of wave forces on these structures. A scale model was tested to obtain wave forces and the paper compares results from the model with those of numerical methods and discusses the application of the results to the design functions. Scour effects were also modelled and the results used as the basis for design of scour protection.


Author(s):  
Srete Nikolovski ◽  
Hamid Reza Baghaee ◽  
Dragan Mlakić

One of the most crucial and economically beneficial tasks for energy customer is peak load curtailment. On account of the fast response of renewable energy resources (RERs) such as photovoltaic (PV) units and battery energy storage system (BESS), this task is closer to be efficiently implemented. Depends on the customer peak load demand and energy characteristics, the feasibility of this strategy may warry. When adaptive neuro-fuzzy inference system (ANFIS) is exploited for forecasting, it can provide many benefits to address the above-mentioned issues and facilitate its easy implementation, with short calculating time and re-trainability. This paper introduces a data driven forecasting method based on fuzzy logic for optimized peak load reduction. First, the amount of energy generated by PV is forecasted using ANFIS which conducts output trend, and then, the BESS capacity is calculated according to the forecasted results. The trend of the load power is then decomposed in Cartesian plane into two parts, left and right from load peak, searching for BESS capacity equal. Network switching sequence over consumption is provided by a fuzzy logic controller (FLC) with respect to BESS capacity and PV energy output. Finally, to prove the effectiveness of the proposed ANFIS-based peak shaving method, offline digital time-domain simulations have been performed on a real-life practical test micro grid system in MATLAB/Simulink environment and the results have been experimentally verified by testing on a practical micro grid system with real-life data obtained from smart meter and also, compared with several previously-reported methods.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2953 ◽  
Author(s):  
Srete Nikolovski ◽  
Hamid Reza Baghaee ◽  
Dragan Mlakić

One of the most crucial and economically-beneficial tasks for energy customers is peak load curtailment. On account of the fast response of renewable energy resources (RERs) such as photovoltaic (PV) units and battery energy storage system (BESS), this task is closer to be efficiently implemented. Depends on the customer peak load demand and energy characteristics, the feasibility of this strategy may vary. When adaptive neuro-fuzzy inference system (ANFIS) is exploited for forecasting, it can provide many benefits to address the above-mentioned issues and facilitate its easy implementation, with short calculating time and re-trainability. This paper introduces a data-driven forecasting method based on fuzzy logic (FL) for optimized peak load reduction. First, the amount of energy generated by PV is forecasted using ANFIS which conducts output trend, and then, the BESS capacity is calculated according to the forecasted results. The trend of the load power is then decomposed in Cartesian plane into two parts, namely left and right from load peak, for the sake of searching for equal BESS capacity. Network switching sequence over consumption is provided by a fuzzy logic controller (FLC) considering BESS capacity and PV energy output. Finally, to prove the effectiveness of the proposed ANFIS-based peak power shaving/curtailment method, offline digital time-domain simulations have been performed on a test microgrid system using the data gathered from a real-life practical test microgrid system in the MATLAB/Simulink environment and the results have been experimentally verified by testing on a practical microgrid system with real-life data obtained from smart meters and also, compared with several previously-reported methods.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 709
Author(s):  
Deukyoung Lee ◽  
Dongjun Lee ◽  
Hanhwi Jang ◽  
Sung-Kwan Joo

Increasing renewable energy penetration rate in a power grid leads to an increase in the variability of the generated energy, which increases the system integration cost. To handle the output variations in the generation, it is necessary to secure sufficient flexible resources, such as energy storage units. Flexible resources can adjust the output quickly, which helps to increase the system flexibility. However, the electricity generation cost of the flexible resources is usually high. Because the renewable energy expansion policy is being implemented worldwide, it is necessary to evaluate the ability to manage the short-term variations of the renewable energy outputs to obtain a cost-effective long-term plan. In this study, the variability of renewable energy in Korea over the past five years was analyzed. Additionally, the backup capacity is determined to manage the variability of renewable energy output. The backup capacity is affected by system flexibility. In general, increasing system flexibility decreases the backup capacity and increases the total electricity production cost. In this study, a backup capacity planning method is proposed considering the short-term variability of renewable energy output and flexibility deficit in a power system. The numerical results illustrated the effectiveness of the proposed backup capacity planning method.


2021 ◽  
Vol 10 (3) ◽  
pp. 517-525
Author(s):  
Franto Novico ◽  
Evi Hadrijantie Sudjono ◽  
Andi Egon ◽  
David Menier ◽  
Manoj Methew ◽  
...  

Indonesia is currently intensively developing its renewable energy resource and targets at least 23% by 2025. As an archipelago country, Indonesia has the potential to benefit from its abundant renewable energy resources from its offshore regions. However, the short tidal range of mixed semi-diurnal and the suitable tidal turbine capacity may hinder marine renewable energy development in Indonesian waters. This paper presents higher-order hydrodynamic numerical models to provide spatial information for tidal current resource assessment of the Patinti Strait. The present study applied the hydrographic and oceanographic method to produce input of the numerical model. Based on the selected simulation analysis, the highest current speed could be identified around Sabatang and Saleh Kecil Island with up to 2.5 m/s in P1 and 1.7 m/s in P4. Besides, the operational hours for the two observation points are 69% and 74.5%, respectively. The results indicate that this location is of prime interest for tidal turbine implementation as an energy source, for medium capacity (300 kW) and high capacity (1 MW).


The tidal range is a renewable energy source. In Malaysia, most of the produced renewable energy is generated from the exploitation of the tidal range. The main purpose of this research is to determine a suitable system to produce tidal range energy from a potential site. A turbine selection chart is used. The mean tidal range of Kuching Barrage is 4.2m and the maximum flow rate over a gate is 226.9m3/s. Therefore, for the extraction of electrical power, a bulb-type turbine with a rated power of 5.2MW is identified as suitable to be deployed at the site.


Sign in / Sign up

Export Citation Format

Share Document